• Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Case Study in Education Research

Introduction, general overview and foundational texts of the late 20th century.

  • Conceptualisations and Definitions of Case Study
  • Case Study and Theoretical Grounding
  • Choosing Cases
  • Methodology, Method, Genre, or Approach
  • Case Study: Quality and Generalizability
  • Multiple Case Studies
  • Exemplary Case Studies and Example Case Studies
  • Criticism, Defense, and Debate around Case Study

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Data Collection in Educational Research
  • Mixed Methods Research
  • Program Evaluation

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Gender, Power, and Politics in the Academy
  • Non-Formal & Informal Environmental Education
  • Motherscholars
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Case Study in Education Research by Lorna Hamilton LAST REVIEWED: 21 April 2021 LAST MODIFIED: 27 June 2018 DOI: 10.1093/obo/9780199756810-0201

It is important to distinguish between case study as a teaching methodology and case study as an approach, genre, or method in educational research. The use of case study as teaching method highlights the ways in which the essential qualities of the case—richness of real-world data and lived experiences—can help learners gain insights into a different world and can bring learning to life. The use of case study in this way has been around for about a hundred years or more. Case study use in educational research, meanwhile, emerged particularly strongly in the 1970s and 1980s in the United Kingdom and the United States as a means of harnessing the richness and depth of understanding of individuals, groups, and institutions; their beliefs and perceptions; their interactions; and their challenges and issues. Writers, such as Lawrence Stenhouse, advocated the use of case study as a form that teacher-researchers could use as they focused on the richness and intensity of their own practices. In addition, academic writers and postgraduate students embraced case study as a means of providing structure and depth to educational projects. However, as educational research has developed, so has debate on the quality and usefulness of case study as well as the problems surrounding the lack of generalizability when dealing with single or even multiple cases. The question of how to define and support case study work has formed the basis for innumerable books and discursive articles, starting with Robert Yin’s original book on case study ( Yin 1984 , cited under General Overview and Foundational Texts of the Late 20th Century ) to the myriad authors who attempt to bring something new to the realm of case study in educational research in the 21st century.

This section briefly considers the ways in which case study research has developed over the last forty to fifty years in educational research usage and reflects on whether the field has finally come of age, respected by creators and consumers of research. Case study has its roots in anthropological studies in which a strong ethnographic approach to the study of peoples and culture encouraged researchers to identify and investigate key individuals and groups by trying to understand the lived world of such people from their points of view. Although ethnography has emphasized the role of researcher as immersive and engaged with the lived world of participants via participant observation, evolving approaches to case study in education has been about the richness and depth of understanding that can be gained through involvement in the case by drawing on diverse perspectives and diverse forms of data collection. Embracing case study as a means of entering these lived worlds in educational research projects, was encouraged in the 1970s and 1980s by researchers, such as Lawrence Stenhouse, who provided a helpful impetus for case study work in education ( Stenhouse 1980 ). Stenhouse wrestled with the use of case study as ethnography because ethnographers traditionally had been unfamiliar with the peoples they were investigating, whereas educational researchers often worked in situations that were inherently familiar. Stenhouse also emphasized the need for evidence of rigorous processes and decisions in order to encourage robust practice and accountability to the wider field by allowing others to judge the quality of work through transparency of processes. Yin 1984 , the first book focused wholly on case study in research, gave a brief and basic outline of case study and associated practices. Various authors followed this approach, striving to engage more deeply in the significance of case study in the social sciences. Key among these are Merriam 1988 and Stake 1995 , along with Yin 1984 , who established powerful groundings for case study work. Additionally, evidence of the increasing popularity of case study can be found in a broad range of generic research methods texts, but these often do not have much scope for the extensive discussion of case study found in case study–specific books. Yin’s books and numerous editions provide a developing or evolving notion of case study with more detailed accounts of the possible purposes of case study, followed by Merriam 1988 and Stake 1995 who wrestled with alternative ways of looking at purposes and the positioning of case study within potential disciplinary modes. The authors referenced in this section are often characterized as the foundational authors on this subject and may have published various editions of their work, cited elsewhere in this article, based on their shifting ideas or emphases.

Merriam, S. B. 1988. Case study research in education: A qualitative approach . San Francisco: Jossey-Bass.

This is Merriam’s initial text on case study and is eminently accessible. The author establishes and reinforces various key features of case study; demonstrates support for positioning the case within a subject domain, e.g., psychology, sociology, etc.; and further shapes the case according to its purpose or intent.

Stake, R. E. 1995. The art of case study research . Thousand Oaks, CA: SAGE.

Stake is a very readable author, accessible and yet engaging with complex topics. The author establishes his key forms of case study: intrinsic, instrumental, and collective. Stake brings the reader through the process of conceptualizing the case, carrying it out, and analyzing the data. The author uses authentic examples to help readers understand and appreciate the nuances of an interpretive approach to case study.

Stenhouse, L. 1980. The study of samples and the study of cases. British Educational Research Journal 6:1–6.

DOI: 10.1080/0141192800060101

A key article in which Stenhouse sets out his stand on case study work. Those interested in the evolution of case study use in educational research should consider this article and the insights given.

Yin, R. K. 1984. Case Study Research: Design and Methods . Beverley Hills, CA: SAGE.

This preliminary text from Yin was very basic. However, it may be of interest in comparison with later books because Yin shows the ways in which case study as an approach or method in research has evolved in relation to detailed discussions of purpose, as well as the practicalities of working through the research process.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Education »
  • Meet the Editorial Board »
  • Academic Achievement
  • Academic Audit for Universities
  • Academic Freedom and Tenure in the United States
  • Action Research in Education
  • Adjuncts in Higher Education in the United States
  • Administrator Preparation
  • Adolescence
  • Advanced Placement and International Baccalaureate Courses
  • Advocacy and Activism in Early Childhood
  • African American Racial Identity and Learning
  • Alaska Native Education
  • Alternative Certification Programs for Educators
  • Alternative Schools
  • American Indian Education
  • Animals in Environmental Education
  • Art Education
  • Artificial Intelligence and Learning
  • Assessing School Leader Effectiveness
  • Assessment, Behavioral
  • Assessment, Educational
  • Assessment in Early Childhood Education
  • Assistive Technology
  • Augmented Reality in Education
  • Beginning-Teacher Induction
  • Bilingual Education and Bilingualism
  • Black Undergraduate Women: Critical Race and Gender Perspe...
  • Blended Learning
  • Case Study in Education Research
  • Changing Professional and Academic Identities
  • Character Education
  • Children’s and Young Adult Literature
  • Children's Beliefs about Intelligence
  • Children's Rights in Early Childhood Education
  • Citizenship Education
  • Civic and Social Engagement of Higher Education
  • Classroom Learning Environments: Assessing and Investigati...
  • Classroom Management
  • Coherent Instructional Systems at the School and School Sy...
  • College Admissions in the United States
  • College Athletics in the United States
  • Community Relations
  • Comparative Education
  • Computer-Assisted Language Learning
  • Computer-Based Testing
  • Conceptualizing, Measuring, and Evaluating Improvement Net...
  • Continuous Improvement and "High Leverage" Educational Pro...
  • Counseling in Schools
  • Critical Approaches to Gender in Higher Education
  • Critical Perspectives on Educational Innovation and Improv...
  • Critical Race Theory
  • Crossborder and Transnational Higher Education
  • Cross-National Research on Continuous Improvement
  • Cross-Sector Research on Continuous Learning and Improveme...
  • Cultural Diversity in Early Childhood Education
  • Culturally Responsive Leadership
  • Culturally Responsive Pedagogies
  • Culturally Responsive Teacher Education in the United Stat...
  • Curriculum Design
  • Data-driven Decision Making in the United States
  • Deaf Education
  • Desegregation and Integration
  • Design Thinking and the Learning Sciences: Theoretical, Pr...
  • Development, Moral
  • Dialogic Pedagogy
  • Digital Age Teacher, The
  • Digital Citizenship
  • Digital Divides
  • Disabilities
  • Distance Learning
  • Distributed Leadership
  • Doctoral Education and Training
  • Early Childhood Education and Care (ECEC) in Denmark
  • Early Childhood Education and Development in Mexico
  • Early Childhood Education in Aotearoa New Zealand
  • Early Childhood Education in Australia
  • Early Childhood Education in China
  • Early Childhood Education in Europe
  • Early Childhood Education in Sub-Saharan Africa
  • Early Childhood Education in Sweden
  • Early Childhood Education Pedagogy
  • Early Childhood Education Policy
  • Early Childhood Education, The Arts in
  • Early Childhood Mathematics
  • Early Childhood Science
  • Early Childhood Teacher Education
  • Early Childhood Teachers in Aotearoa New Zealand
  • Early Years Professionalism and Professionalization Polici...
  • Economics of Education
  • Education For Children with Autism
  • Education for Sustainable Development
  • Education Leadership, Empirical Perspectives in
  • Education of Native Hawaiian Students
  • Education Reform and School Change
  • Educational Statistics for Longitudinal Research
  • Educator Partnerships with Parents and Families with a Foc...
  • Emotional and Affective Issues in Environmental and Sustai...
  • Emotional and Behavioral Disorders
  • Environmental and Science Education: Overlaps and Issues
  • Environmental Education
  • Environmental Education in Brazil
  • Epistemic Beliefs
  • Equity and Improvement: Engaging Communities in Educationa...
  • Equity, Ethnicity, Diversity, and Excellence in Education
  • Ethical Research with Young Children
  • Ethics and Education
  • Ethics of Teaching
  • Ethnic Studies
  • Evidence-Based Communication Assessment and Intervention
  • Family and Community Partnerships in Education
  • Family Day Care
  • Federal Government Programs and Issues
  • Feminization of Labor in Academia
  • Finance, Education
  • Financial Aid
  • Formative Assessment
  • Future-Focused Education
  • Gender and Achievement
  • Gender and Alternative Education
  • Gender-Based Violence on University Campuses
  • Gifted Education
  • Global Mindedness and Global Citizenship Education
  • Global University Rankings
  • Governance, Education
  • Grounded Theory
  • Growth of Effective Mental Health Services in Schools in t...
  • Higher Education and Globalization
  • Higher Education and the Developing World
  • Higher Education Faculty Characteristics and Trends in the...
  • Higher Education Finance
  • Higher Education Governance
  • Higher Education Graduate Outcomes and Destinations
  • Higher Education in Africa
  • Higher Education in China
  • Higher Education in Latin America
  • Higher Education in the United States, Historical Evolutio...
  • Higher Education, International Issues in
  • Higher Education Management
  • Higher Education Policy
  • Higher Education Research
  • Higher Education Student Assessment
  • High-stakes Testing
  • History of Early Childhood Education in the United States
  • History of Education in the United States
  • History of Technology Integration in Education
  • Homeschooling
  • Inclusion in Early Childhood: Difference, Disability, and ...
  • Inclusive Education
  • Indigenous Education in a Global Context
  • Indigenous Learning Environments
  • Indigenous Students in Higher Education in the United Stat...
  • Infant and Toddler Pedagogy
  • Inservice Teacher Education
  • Integrating Art across the Curriculum
  • Intelligence
  • Intensive Interventions for Children and Adolescents with ...
  • International Perspectives on Academic Freedom
  • Intersectionality and Education
  • Knowledge Development in Early Childhood
  • Leadership Development, Coaching and Feedback for
  • Leadership in Early Childhood Education
  • Leadership Training with an Emphasis on the United States
  • Learning Analytics in Higher Education
  • Learning Difficulties
  • Learning, Lifelong
  • Learning, Multimedia
  • Learning Strategies
  • Legal Matters and Education Law
  • LGBT Youth in Schools
  • Linguistic Diversity
  • Linguistically Inclusive Pedagogy
  • Literacy Development and Language Acquisition
  • Literature Reviews
  • Mathematics Identity
  • Mathematics Instruction and Interventions for Students wit...
  • Mathematics Teacher Education
  • Measurement for Improvement in Education
  • Measurement in Education in the United States
  • Meta-Analysis and Research Synthesis in Education
  • Methodological Approaches for Impact Evaluation in Educati...
  • Methodologies for Conducting Education Research
  • Mindfulness, Learning, and Education
  • Multiliteracies in Early Childhood Education
  • Multiple Documents Literacy: Theory, Research, and Applica...
  • Multivariate Research Methodology
  • Museums, Education, and Curriculum
  • Music Education
  • Narrative Research in Education
  • Native American Studies
  • Note-Taking
  • Numeracy Education
  • One-to-One Technology in the K-12 Classroom
  • Online Education
  • Open Education
  • Organizing for Continuous Improvement in Education
  • Organizing Schools for the Inclusion of Students with Disa...
  • Outdoor Play and Learning
  • Outdoor Play and Learning in Early Childhood Education
  • Pedagogical Leadership
  • Pedagogy of Teacher Education, A
  • Performance Objectives and Measurement
  • Performance-based Research Assessment in Higher Education
  • Performance-based Research Funding
  • Phenomenology in Educational Research
  • Philosophy of Education
  • Physical Education
  • Podcasts in Education
  • Policy Context of United States Educational Innovation and...
  • Politics of Education
  • Portable Technology Use in Special Education Programs and ...
  • Post-humanism and Environmental Education
  • Pre-Service Teacher Education
  • Problem Solving
  • Productivity and Higher Education
  • Professional Development
  • Professional Learning Communities
  • Programs and Services for Students with Emotional or Behav...
  • Psychology Learning and Teaching
  • Psychometric Issues in the Assessment of English Language ...
  • Qualitative Data Analysis Techniques
  • Qualitative, Quantitative, and Mixed Methods Research Samp...
  • Qualitative Research Design
  • Quantitative Research Designs in Educational Research
  • Queering the English Language Arts (ELA) Writing Classroom
  • Race and Affirmative Action in Higher Education
  • Reading Education
  • Refugee and New Immigrant Learners
  • Relational and Developmental Trauma and Schools
  • Relational Pedagogies in Early Childhood Education
  • Reliability in Educational Assessments
  • Religion in Elementary and Secondary Education in the Unit...
  • Researcher Development and Skills Training within the Cont...
  • Research-Practice Partnerships in Education within the Uni...
  • Response to Intervention
  • Restorative Practices
  • Risky Play in Early Childhood Education
  • Scale and Sustainability of Education Innovation and Impro...
  • Scaling Up Research-based Educational Practices
  • School Accreditation
  • School Choice
  • School Culture
  • School District Budgeting and Financial Management in the ...
  • School Improvement through Inclusive Education
  • School Reform
  • Schools, Private and Independent
  • School-Wide Positive Behavior Support
  • Science Education
  • Secondary to Postsecondary Transition Issues
  • Self-Regulated Learning
  • Self-Study of Teacher Education Practices
  • Service-Learning
  • Severe Disabilities
  • Single Salary Schedule
  • Single-sex Education
  • Single-Subject Research Design
  • Social Context of Education
  • Social Justice
  • Social Network Analysis
  • Social Pedagogy
  • Social Science and Education Research
  • Social Studies Education
  • Sociology of Education
  • Standards-Based Education
  • Statistical Assumptions
  • Student Access, Equity, and Diversity in Higher Education
  • Student Assignment Policy
  • Student Engagement in Tertiary Education
  • Student Learning, Development, Engagement, and Motivation ...
  • Student Participation
  • Student Voice in Teacher Development
  • Sustainability Education in Early Childhood Education
  • Sustainability in Early Childhood Education
  • Sustainability in Higher Education
  • Teacher Beliefs and Epistemologies
  • Teacher Collaboration in School Improvement
  • Teacher Evaluation and Teacher Effectiveness
  • Teacher Preparation
  • Teacher Training and Development
  • Teacher Unions and Associations
  • Teacher-Student Relationships
  • Teaching Critical Thinking
  • Technologies, Teaching, and Learning in Higher Education
  • Technology Education in Early Childhood
  • Technology, Educational
  • Technology-based Assessment
  • The Bologna Process
  • The Regulation of Standards in Higher Education
  • Theories of Educational Leadership
  • Three Conceptions of Literacy: Media, Narrative, and Gamin...
  • Tracking and Detracking
  • Traditions of Quality Improvement in Education
  • Transformative Learning
  • Transitions in Early Childhood Education
  • Tribally Controlled Colleges and Universities in the Unite...
  • Understanding the Psycho-Social Dimensions of Schools and ...
  • University Faculty Roles and Responsibilities in the Unite...
  • Using Ethnography in Educational Research
  • Value of Higher Education for Students and Other Stakehold...
  • Virtual Learning Environments
  • Vocational and Technical Education
  • Wellness and Well-Being in Education
  • Women's and Gender Studies
  • Young Children and Spirituality
  • Young Children's Learning Dispositions
  • Young Children's Working Theories
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|185.80.150.64]
  • 185.80.150.64

No internet connection.

All search filters on the page have been cleared., your search has been saved..

  • All content
  • Dictionaries
  • Encyclopedias
  • Expert Insights
  • Foundations
  • How-to Guides
  • Journal Articles
  • Little Blue Books
  • Little Green Books
  • Project Planner
  • Tools Directory
  • Sign in to my profile No Name

Not Logged In

  • Sign in Signed in
  • My profile No Name

Not Logged In

Using Case Study in Education Research

  • By: Lorna Hamilton & Connie Corbett-Whittier
  • Publisher: SAGE Publications Ltd
  • Series: BERA/SAGE Research Methods in Education
  • Publication year: 2013
  • Online pub date: December 22, 2014
  • Discipline: Education
  • Methods: Case study research , Research questions , Educational research
  • DOI: https:// doi. org/10.4135/9781473913851
  • Keywords: collaboration , debates , education studies , knowledge , teaching , virtual environments , young people Show all Show less
  • Print ISBN: 9781446208175
  • Online ISBN: 9781473913851
  • Buy the book icon link

Subject index

This book provides an accessible introduction to using case studies. It makes sense of literature in this area, and shows how to generate collaborations and communicate findings.

The authors bring together the practical and the theoretical, enabling readers to build expertise on the principles and practice of case study research, as well as engaging with possible theoretical frameworks. They also highlight the place of case study as a key component of educational research.

With the help of this book, graduate students, teacher educators and practitioner researchers will gain the confidence and skills needed to design and conduct a high quality case study.

Front Matter

  • Research Methods in Education
  • Acknowledgements
  • About the Authors
  • Introduction
  • Chapter 1 | Defining Case Study in Education Research
  • Chapter 2 | Ideas as the Foundation for Case Study
  • Chapter 3 | Key Purposes
  • Chapter 4 | Key Decisions
  • Chapter 5 | Ethics in Research
  • Chapter 6 | Carrying Out Your Case Study
  • Chapter 7 | A Practitioner Perspective
  • Chapter 8 | Approaches to Data Analysis
  • Chapter 9 | Using Technology to Manage and Analyse Your Data
  • Chapter 10 | Finding Your Voice
  • Chapter 11 | Sharing Case Study: Quality and Communication
  • Chapter 12 | Virtual Environments and Collaborations
  • Chapter 13 | Community Building

Back Matter

Sign in to access this content, get a 30 day free trial, more like this, sage recommends.

We found other relevant content for you on other Sage platforms.

Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches

  • Sign in/register

Navigating away from this page will delete your results

Please save your results to "My Self-Assessments" in your profile before navigating away from this page.

Sign in to my profile

Sign up for a free trial and experience all Sage Learning Resources have to offer.

You must have a valid academic email address to sign up.

Get off-campus access

  • View or download all content my institution has access to.

Sign up for a free trial and experience all Sage Research Methods has to offer.

  • view my profile
  • view my lists
  • Find My Rep

You are here

Using Case Study in Education Research

Using Case Study in Education Research

  • Lorna Hamilton - University of Edinburgh, UK
  • Connie Corbett-Whittier - Friends University, Topeka, Kansas
  • Description

The authors bring together the practical and the theoretical, enabling readers to build expertise on the principles and practice of case study research, as well as engaging with possible theoretical frameworks. They also highlight the place of case study as a key component of educational research.

With the help of this book, M-Level students, teacher educators and practitioner researchers will gain the confidence and skills needed to design and conduct a high quality case study.

Dr Lorna Hamilton is a Senior Lecturer in Education Research at the University of Edinburgh. Dr Connie Corbett-Whittier is an Associate Professor of English and Humanities at Friends University, Topeka, Kansas.

'Drawing on a wide range of their own and others' experiences, the authors offer a comprehensive and convincing account of the value of case study in educational research. What comes across - quite passionately - is the way in which a case study approach can bring to life some of the complexities, challenges and contradictions inherent in educational settings. The book is written in a clear and lively manner and should be an invaluable resource for those teachers and students who are incorporating a case study dimension into their research work.' -Ian Menter, Professor of Teacher Education, University of Oxford

'This book is comprehensive in its coverage, yet detailed in its exposition of case study research. It is a highly interactive text with a critical edge and is a useful tool for teaching. It is of particular relevance to practitioner researchers, providing accessible guidance for reflective practice. It covers key matters such as: purposes, ethics, data analysis, technology, dissemination and communities for research. And it is a good read!' -

Professor Anne Campbell, formerly of Leeds Metropolitan University

'This excellent book is a principled and theoretically informed guide to case study research design and methods for the collection, analysis and presentatin of evidence' - Professor Andrew Pollard, Institute of Education, University of London

Research Methods in Education series:

Each book in this series maps the territory of a key research approach or topic in order to help readers progress from beginner to advanced researcher.

Each book aims to provide a definitive, market-leading overview and to present a blend of theory and practice with a critical edge. All titles in the series are written for Master's-level students anywhere and are intended to be useful to the many diverse constituencies interested in research on education and related areas.

Other books in the series:

- Qualitative Research in Education, Atkins and Wallace

- Action Research in Education, McAteer

- Ethnography in Education, Mills and Morton

'Drawing on a wide range of their own and others' experiences, the authors offer a comprehensive and convincing account of the value of case study in educational research. What comes across - quite passionately - is the way in which a case study approach can bring to life some of the complexities, challenges and contradictions inherent in educational settings. The book is written in a clear and lively manner and should be an invaluable resource for those teachers and students who are incorporating a case study dimension into their research work' - Ian Menter, Professor of Teacher Education, University of Oxford

'This book is comprehensive in its coverage, yet detailed in its exposition of case study research. It is a highly interactive text with a critical edge and is a useful tool for teaching. It is of particular relevance to practitioner researchers, providing accessible guidance for reflective practice. It covers key matters such as: purposes, ethics, data analysis, technology, dissemination and communities for research. And it is a good read!' - Professor Anne Campbell, formerly of Leeds Metropolitan University

'This excellent book is a principled and theoretically informed guide to case study research design and methods for the collection, analysis and presentation of evidence' -Professor Andrew Pollard, Institute of Educaiton, University of London

This publication provides easy text, giving differing viewpoints to establish definitions for case study research. This book has been recommended to the Fd students to support projects of action research.

This has again been recommended for students on the Foundation Degree and Degree programmes as it is an easy text, providing differing viewpoints to establish definitions for case study research. Additionally recommended on the reading list for the BA programmes to provide a clearer insight into using Case Studies in preschool and school environments.

This is an excellent book - very clear

This text clearly discusses the case study approach and would be useful for both undergraduate and post graduate learners.

An easily accessible text, giving alternative points of view on what case study research actually is and how it might be interpreted at doctoral level.

This is a pleasant read with a number of useful group and individual tasks for students to engage with as they think through designing and doing a project. These tasks for useful not just for case studies but can be adapted as students consider other research designs.

Offers a good understanding of case study research in a clear and accessible manner. A perfect starting point for the researcher new to the case study method and will also offer the experienced researcher some useful tips and insights.

This text is clearly written and argues strongly for using case study in educational research, despite the challenges this approach faces in the dynamic world of shifting research paradigms. Step-by-step guidance from initial ideas through to the reality of undertaking case study in educational research is helpful

The book is written in a practical way, which gives a clear guide for undergraduate students especially for those who are using case study in education research. I will definitely add this book to recommended reading lists.

Preview this book

Sample materials & chapters.

Additional Resource 1

Additional Resource 2

Sample Chapter - Chapter 1

Activity 6.12 Observation 1 p98

Activity 6.12 Observation 2 p98

Activity 6.12 Observation 3 p98

Activity 6.18 Interview pupils

Activity 6.18 Interview schedule 1

Activity 6.19 and 6.20 Questionnaire P110

Activity 6.20 Questionnaire 2 p110

Activity 6.21 Sample interview teachers

For instructors

Please select a format:

Select a Purchasing Option

  • Electronic Order Options VitalSource Amazon Kindle Google Play eBooks.com Kobo

Related Products

Doing Research in Education

SAGE Research Methods is a research methods tool created to help researchers, faculty and students with their research projects. SAGE Research Methods links over 175,000 pages of SAGE’s renowned book, journal and reference content with truly advanced search and discovery tools. Researchers can explore methods concepts to help them design research projects, understand particular methods or identify a new method, conduct their research, and write up their findings. Since SAGE Research Methods focuses on methodology rather than disciplines, it can be used across the social sciences, health sciences, and more.

With SAGE Research Methods, researchers can explore their chosen method across the depth and breadth of content, expanding or refining their search as needed; read online, print, or email full-text content; utilize suggested related methods and links to related authors from SAGE Research Methods' robust library and unique features; and even share their own collections of content through Methods Lists. SAGE Research Methods contains content from over 720 books, dictionaries, encyclopedias, and handbooks, the entire “Little Green Book,” and "Little Blue Book” series, two Major Works collating a selection of journal articles, and specially commissioned videos.

  • Resources Home
  • All Publications
  • Digital Resources
  • The BERA Podcast
  • Research Intelligence
  • BERA Journals
  • BERA Blog Home
  • About the blog
  • Blog special issues
  • Blog series
  • Submission policy
  • Opportunities Home
  • Awards and Funding
  • Communities Home
  • Special Interest Groups
  • Early Career Researcher Network
  • Events Home
  • BERA Conference 2024
  • Upcoming Events
  • Past Events
  • Past Conferences
  • BERA Membership

Resources for research

Case studies in educational research

31 Mar 2011

Dr Lorna Hamilton

To cite this reference: Hamilton, L. (2011) Case studies in educational research, British Educational Research Association on-line resource. Available on-line at [INSERT WEB PAGE ADDRESS HERE] Last accessed [insert date here]

Case study is often seen as a means of gathering together data and giving coherence and limit to what is being sought. But how can we define case study effectively and ensure that it is thoughtfully and rigorously constructed?  This resource shares some key definitions of case study and identifies important choices and decisions around the creation of studies. It is for those with little or no experience of case study in education research and provides an introduction to some of the key aspects of this approach: from the all important question of what exactly is case study, to the key decisions around case study work and possible approaches to dealing with the data collected. At the end of the resource, key references and resources are identified which provide the reader with further guidance.

More related content

Reports 18 Dec 2023

Research Intelligence 23 Nov 2023

Reports 9 Nov 2023

News 15 Feb 2024

News 2 Feb 2024

BERA in the news 2 Feb 2024

News 10 Jan 2024

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism. Run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

case study methodology in educational research

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved February 22, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, what is your plagiarism score.

  • Privacy Policy
  • SignUp/Login

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Qualitative Research Methods

Qualitative Research Methods

Basic Research

Basic Research – Types, Methods and Examples

Exploratory Research

Exploratory Research – Types, Methods and...

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Logo for Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Research Guides

Multiple Case Studies

Nadia Alqahtani and Pengtong Qu

Description

The case study approach is popular across disciplines in education, anthropology, sociology, psychology, medicine, law, and political science (Creswell, 2013). It is both a research method and a strategy (Creswell, 2013; Yin, 2017). In this type of research design, a case can be an individual, an event, or an entity, as determined by the research questions. There are two variants of the case study: the single-case study and the multiple-case study. The former design can be used to study and understand an unusual case, a critical case, a longitudinal case, or a revelatory case. On the other hand, a multiple-case study includes two or more cases or replications across the cases to investigate the same phenomena (Lewis-Beck, Bryman & Liao, 2003; Yin, 2017). …a multiple-case study includes two or more cases or replications across the cases to investigate the same phenomena

The difference between the single- and multiple-case study is the research design; however, they are within the same methodological framework (Yin, 2017). Multiple cases are selected so that “individual case studies either (a) predict similar results (a literal replication) or (b) predict contrasting results but for anticipatable reasons (a theoretical replication)” (p. 55). When the purpose of the study is to compare and replicate the findings, the multiple-case study produces more compelling evidence so that the study is considered more robust than the single-case study (Yin, 2017).

To write a multiple-case study, a summary of individual cases should be reported, and researchers need to draw cross-case conclusions and form a cross-case report (Yin, 2017). With evidence from multiple cases, researchers may have generalizable findings and develop theories (Lewis-Beck, Bryman & Liao, 2003).

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). Los Angeles, CA: Sage.

Lewis-Beck, M., Bryman, A. E., & Liao, T. F. (2003). The Sage encyclopedia of social science research methods . Los Angeles, CA: Sage.

Yin, R. K. (2017). Case study research and applications: Design and methods . Los Angeles, CA: Sage.

Key Research Books and Articles on Multiple Case Study Methodology

Yin discusses how to decide if a case study should be used in research. Novice researchers can learn about research design, data collection, and data analysis of different types of case studies, as well as writing a case study report.

Chapter 2 introduces four major types of research design in case studies: holistic single-case design, embedded single-case design, holistic multiple-case design, and embedded multiple-case design. Novice researchers will learn about the definitions and characteristics of different designs. This chapter also teaches researchers how to examine and discuss the reliability and validity of the designs.

Creswell, J. W., & Poth, C. N. (2017). Qualitative inquiry and research design: Choosing among five approaches . Los Angeles, CA: Sage.

This book compares five different qualitative research designs: narrative research, phenomenology, grounded theory, ethnography, and case study. It compares the characteristics, data collection, data analysis and representation, validity, and writing-up procedures among five inquiry approaches using texts with tables. For each approach, the author introduced the definition, features, types, and procedures and contextualized these components in a study, which was conducted through the same method. Each chapter ends with a list of relevant readings of each inquiry approach.

This book invites readers to compare these five qualitative methods and see the value of each approach. Readers can consider which approach would serve for their research contexts and questions, as well as how to design their research and conduct the data analysis based on their choice of research method.

Günes, E., & Bahçivan, E. (2016). A multiple case study of preservice science teachers’ TPACK: Embedded in a comprehensive belief system. International Journal of Environmental and Science Education, 11 (15), 8040-8054.

In this article, the researchers showed the importance of using technological opportunities in improving the education process and how they enhanced the students’ learning in science education. The study examined the connection between “Technological Pedagogical Content Knowledge” (TPACK) and belief system in a science teaching context. The researchers used the multiple-case study to explore the effect of TPACK on the preservice science teachers’ (PST) beliefs on their TPACK level. The participants were three teachers with the low, medium, and high level of TPACK confidence. Content analysis was utilized to analyze the data, which were collected by individual semi-structured interviews with the participants about their lesson plans. The study first discussed each case, then compared features and relations across cases. The researchers found that there was a positive relationship between PST’s TPACK confidence and TPACK level; when PST had higher TPACK confidence, the participant had a higher competent TPACK level and vice versa.

Recent Dissertations Using Multiple Case Study Methodology

Milholland, E. S. (2015). A multiple case study of instructors utilizing Classroom Response Systems (CRS) to achieve pedagogical goals . Retrieved from ProQuest Dissertations & Theses Global. (Order Number 3706380)

The researcher of this study critiques the use of Classroom Responses Systems by five instructors who employed this program five years ago in their classrooms. The researcher conducted the multiple-case study methodology and categorized themes. He interviewed each instructor with questions about their initial pedagogical goals, the changes in pedagogy during teaching, and the teaching techniques individuals used while practicing the CRS. The researcher used the multiple-case study with five instructors. He found that all instructors changed their goals during employing CRS; they decided to reduce the time of lecturing and to spend more time engaging students in interactive activities. This study also demonstrated that CRS was useful for the instructors to achieve multiple learning goals; all the instructors provided examples of the positive aspect of implementing CRS in their classrooms.

Li, C. L. (2010). The emergence of fairy tale literacy: A multiple case study on promoting critical literacy of children through a juxtaposed reading of classic fairy tales and their contemporary disruptive variants . Retrieved from ProQuest Dissertations & Theses Global. (Order Number 3572104)

To explore how children’s development of critical literacy can be impacted by their reactions to fairy tales, the author conducted a multiple-case study with 4 cases, in which each child was a unit of analysis. Two Chinese immigrant children (a boy and a girl) and two American children (a boy and a girl) at the second or third grade were recruited in the study. The data were collected through interviews, discussions on fairy tales, and drawing pictures. The analysis was conducted within both individual cases and cross cases. Across four cases, the researcher found that the young children’s’ knowledge of traditional fairy tales was built upon mass-media based adaptations. The children believed that the representations on mass-media were the original stories, even though fairy tales are included in the elementary school curriculum. The author also found that introducing classic versions of fairy tales increased children’s knowledge in the genre’s origin, which would benefit their understanding of the genre. She argued that introducing fairy tales can be the first step to promote children’s development of critical literacy.

Asher, K. C. (2014). Mediating occupational socialization and occupational individuation in teacher education: A multiple case study of five elementary pre-service student teachers . Retrieved from ProQuest Dissertations & Theses Global. (Order Number 3671989)

This study portrayed five pre-service teachers’ teaching experience in their student teaching phase and explored how pre-service teachers mediate their occupational socialization with occupational individuation. The study used the multiple-case study design and recruited five pre-service teachers from a Midwestern university as five cases. Qualitative data were collected through interviews, classroom observations, and field notes. The author implemented the case study analysis and found five strategies that the participants used to mediate occupational socialization with occupational individuation. These strategies were: 1) hindering from practicing their beliefs, 2) mimicking the styles of supervising teachers, 3) teaching in the ways in alignment with school’s existing practice, 4) enacting their own ideas, and 5) integrating and balancing occupational socialization and occupational individuation. The study also provided recommendations and implications to policymakers and educators in teacher education so that pre-service teachers can be better supported.

Multiple Case Studies Copyright © 2019 by Nadia Alqahtani and Pengtong Qu is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

University of Edinburgh Research Explorer Logo

  • Help & FAQ

Using Case Study in Education Research

  • Moray House School of Education and Sport
  • Institute for Education, Community & Society

Research output : Book/Report › Book

Abstract / Description of output

Publication series, access to document.

  • http://www.uk.sagepub.com/books/Book237218

Fingerprint

  • Education Research Social Sciences 100%
  • Case Studies Social Sciences 100%
  • Case Study Computer Science 100%
  • Education Computer Science 100%
  • Books Social Sciences 40%
  • Research Worker Computer Science 40%
  • Student Teachers Social Sciences 20%
  • Confidence Social Sciences 20%

T1 - Using Case Study in Education Research

AU - Hamilton, Lorna

AU - Corbett-Whittier, Connie

PY - 2013/1

Y1 - 2013/1

N2 - This book provides an accessible introduction to using case studies. It makes sense of literature in this area, and shows how to generate collaborations and communicate findings.The authors bring together the practical and the theoretical, enabling readers to build expertise on the principles and practice of case study research, as well as engaging with possible theoretical frameworks. They also highlight the place of case study as a key component of educational research.With the help of this book, M-Level students, teacher educators and practitioner researchers will gain the confidence and skills needed to design and conduct a high quality case study.

AB - This book provides an accessible introduction to using case studies. It makes sense of literature in this area, and shows how to generate collaborations and communicate findings.The authors bring together the practical and the theoretical, enabling readers to build expertise on the principles and practice of case study research, as well as engaging with possible theoretical frameworks. They also highlight the place of case study as a key component of educational research.With the help of this book, M-Level students, teacher educators and practitioner researchers will gain the confidence and skills needed to design and conduct a high quality case study.

SN - 9781446208168

T3 - BERA Research Methods

BT - Using Case Study in Education Research

PB - SAGE Publications Ltd

CY - London

How can procedural flowcharts support the development of mathematics problem-solving skills?

  • Original Article
  • Open access
  • Published: 22 February 2024

Cite this article

You have full access to this open access article

  • Musarurwa David Chinofunga   ORCID: orcid.org/0000-0002-0262-3039 1 ,
  • Philemon Chigeza   ORCID: orcid.org/0000-0001-9964-0988 1 &
  • Subhashni Taylor   ORCID: orcid.org/0000-0002-1624-0901 1  

Supporting students’ problem-solving skills, solution planning and sequencing of different stages that are involved in successfully developing a meaningful solution to a problem has been a challenge for teachers. This case study was informed by reflective investigation methodology which explored how procedural flowcharts can support student mathematics problem solving in a senior Mathematical Methods subject in Queensland. The paper used thematic analysis to analyse and report on teachers’ perceptions of the utility of procedural flowcharts during problem solving as well as content analysis on how student-developed flowcharts can support their problem-solving skills. Results show that development of procedural flowcharts can support problem solving as it helps with integration of problem-solving stages.

Avoid common mistakes on your manuscript.

Introduction

Problem solving is central to teaching and learning of mathematics (see Cai, 2010 ; Lester, 2013 ; Schoenfeld et al., 2014 ). For decades, research in mathematics problem solving, including special issues from leading mathematics education journals (see, Educational Studies in Mathematics, (Vol. 83, no. 2013); The Mathematics Enthusiast, (Vol. 10, nos. 1–2); ZDM , (Vol. 39, nos. 5–6)), have offered significant insights but struggled to produce well-articulated guidelines for educational practice (English & Gainsburg, 2016 ). This could possibly be the reason why mathematics teachers’ efforts to improve students’ problem-solving skills have not produced the desired results (Anderson, 2014 ; English & Gainsburg, 2016 ). Despite Polya’s ( 1945 ) heuristics being so valuable in problem solving, there appears to be limited success when translated into the classroom environment (English & Gainsburg, 2016 ). English and Gainsburg went further to posit that one of the issues to be addressed is how to support problem-solving competency in students during the process of problem solving. Thus, teachers’ perceptions in this study are a valuable part in evaluating how procedural flowcharts can support problem solving.

The problem-solving process is a dialogue between the prior knowledge the problem solver possesses, the tentative plan of solving the problem and other relevant thoughts and facts (Schoenfeld, 1983 ). However, research is still needed on tools that teachers can use to support students during problem solving (Lester & Cai, 2016 ). Although research in mathematics problem solving has been progressing, it has remained largely theoretical (Lester, 2013 ). Schoenfeld ( 2013 ) suggests that research focus should now advance from the framework for examining problem solving to explore how ideas grow and are presented and shared during the problem-solving process. Recently, Kaitera and Harmoinen ( 2022 ) emphasised the need to support teachers through resources that can help students develop problem solving skills. They went on to posit that resources that can assist students in presenting different approaches to a solution and displaying their understanding are critical to build their problem-solving skills.

The study by Kaitera and Harmoinen ( 2022 ) introduced mathematics students to ‘problem-solving keys’ which are heuristics for problem solving that students are to follow as they engage with tasks. Their conclusion was also noted by Vale and Barbosa ( 2018 ) who observed that a key area that would benefit from further research is the identification of strategies or plan that support students’ ability to construct and present their mathematical knowledge effectively during problem solving, particularly if complex processes such as integration and modification of several procedures are involved. Similarly, students face challenges in connecting or bringing all the ideas together and showing how they relate as they work towards the solution (Reinholz, 2020 ). Problem solving in mathematics is challenging for students (Ahmad et al., 2010 ), and therefore, supporting students’ problem-solving skills needs urgent attention (Schoenfeld, 2016 ). Furthermore, Mason ( 2016 ) posits that the crucial yet not significantly understood issue for adopting a problem-solving approach to teaching is the issue of “when to introduce explanatory tasks, when to intervene and in what way” (p. 263). Therefore, teachers also need resources to support the teaching of problem-solving skills, often because they were not taught these approaches when they were school students (Kaitera & Harmoinen, 2022 ; Sakshaug & Wohlhuter, 2010 ).

Flowcharts have been widely used in problem solving across different fields. In a technology-rich learning environment such as Lego Robotics, creating flowcharts to explain processes was observed to facilitate understanding, thinking, making sense of how procedures relate, investigating and communicating the solution (Norton et al., 2007 ). They are effective in guiding students during problem solving (Gencer, 2023 ), enhancing achievement and improving problem-solving skills in game-based intelligent tutoring (Hooshyar et al., 2016 ). Flowcharts have been identified as an effective problem-solving tool in health administration (McGowan & Boscia, 2016 ). In mathematics education, heuristic trees and flowcharts were observed to supplement each other in influencing students’ problem solving behaviour (Bos & van den Bogaart, 2022 ). Importantly, McGowan and Boscia emphasised that “one of the greatest advantages of a flowchart is its ability to provide for the visualisation of complex processes, aiding in the understanding of the flow of work, identifying nonvalue-adding activities and areas of concern, and leading to improved problem-solving and decision-making” (p. 213). Identifying the most appropriate strategy and making the correct decision at the right stage are keys to problem solving. Teaching students to use visual representations like flowcharts as part of problem solving supports the ability to easily identify new relationships among different procedures and assess the solution being communicated faster as visual representations are more understandable (Vale et al., 2018 ).

The purpose of this case study was to explore, through an in-depth teacher’s interview, and student-developed artefacts, the utility of procedural flowcharts in supporting the development of students’ problem-solving skills in mathematics. The study will focus on problem solving in Mathematical Methods which is one of the calculus-based mathematics subjects at senior school in Queensland. The aim was to investigate if the development of procedural flowcharts supported students in planning, logically connecting and integrating mathematical procedures (knowledge) and to communicate the solution effectively during problem solving. The use of flowcharts in this study was underpinned by the understanding that visual aids that support cognitive processes and interlinking of ideas and procedures influence decision-making, which is vital in problem-based learning (McGowan & Boscia, 2016 ). Moreover, flowcharts are effective tools for communicating the processes that need to be followed in problem solving (Krohn, 1983 ).

Problem-solving learning in mathematics education

The drive to embrace a problem-solving approach to develop and deepen students’ mathematics knowledge has been a priority in mathematics education (Koellner et al., 2011 ; Sztajn et al., 2017 ). In the problem-solving approach, the teacher provides the problem to be investigated by students who then design ways to solve it (Colburn, 2000 ). To engage in problem solving, students are expected to use concepts and procedures that they have learnt (prior knowledge) and apply them in unfamiliar situations (Matty, 2016 ). Teachers are encouraged to promote problem-solving activities as they involve students engaging with a mathematics task where the procedure or method to the solution is not known in advance (National Council of Teachers of Mathematics [NCTM], 2000 ), thus providing opportunities for deep understanding as well as providing students with the opportunity to develop a unique solution (Queensland Curriculum and Assessment Authority [QCAA], 2018 ). Using this approach, students are given a more active role through applying and adapting procedures to solve a non-routine problem and then communicating the method (Karp & Wasserman, 2015 ). The central role problem solving plays in developing students’ mathematical understanding has resulted in the development of different problem-solving models over the years.

The process of problem solving in mathematics requires knowledge to be organised as the solution is developed and then communicated. Polya is among the first to systematise problem solving in mathematics (Voskoglou, 2021 ). Students need to understand the problem, plan the solution, execute the plan and reflect on the solution and process (Polya, 1971 ). Voskoglou’s ( 2021 ) problem-solving model emphasised that the process of modelling involves analysis of problem, mathematisation, solution development, validation and implementation. Similarly, problem solving is guided by four phases: discover, devise, develop and defend (Makar, 2012 ). During problem solving, students engage with an unfamiliar real-world problem, develop plans in response, justify mathematically through representation, then evaluate and communicate the solution (Artigue & Blomhøj, 2013 ). Furthermore, Schoenfeld ( 1980 ) posited that problem solving involves problem analysis, exploration, design, implementation and verification of the solution. When using a problem-solving approach, students can pose questions, develop way(s) to answer problems (which might include drawing diagrams, carrying out calculations, defining relationships and making conclusions), interpreting, evaluating and communicating the solution (Artigue et al., 2020 ; Dorier & Maass, 2020 ). Problem solving involves understanding the problem, devising and executing the plan and evaluating (Nieuwoudt, 2015 ). Likewise, Blum and Leiß ( 2007 ) developed a modelling approach that was informed by these stages, understanding, simplifying, mathematising, working mathematically, interpreting and validating.

Similarly, mathematical modelling involves problem identification from a contextualised real-world problem, linking the solution to mathematics concepts, carrying out mathematic manipulations, justifying and evaluating the solution in relation to the problem and communicating findings (Geiger et al., 2021 ). Likewise, in modelling, Galbraith and Stillman ( 2006 ) suggested that further research is needed in fostering students’ ability to transition effectively from one phase to the next. “Mathematical modelling is a special kind of problem solving which formulates and solves mathematically real-world problems connected to science and everyday life situations” (Voskoglou, 2021 p. 85). As part of problem solving, mathematical modelling requires students to interpret information from a variety of narrative, expository and graphic texts that reflect authentic real-life situations (Doyle, 2005 ).

There are different approaches to problem solving and modelling, but all of them focus on the solving of real-world problems using mathematical procedures and strategies (Hankeln, 2020 ). A literature synthesis is critical where several models exist as it can be used to develop an overarching conceptual model (Snyder, 2019 ). Torraco ( 2005 ) noted that literature synthesis can be used to integrate different models that address the same phenomenon. For example, in this study, it was used to integrate problem solving models cited in the literature. Moreover, the review was necessitated by the need to reconceptualise the problem-solving model by Polya ( 1971 ) to include the understanding that the definition of problem solving has now broadened to include modelling. Torraco went further to suggest that as literature grows, and knowledge expands on a topic which might accommodate new insights, there is a need for literature synthesis with the aim to reflect the changes. Thus, the model in Fig.  1 took into consideration the key stages broadly identified by the researchers and the understanding that modelling is part of problem solving. Problem solving and modelling is generally a linear process that can include loops depending on how the problem identification, mathematisation and implementation effectively address the problem (Blum & Leiß, 2007 ; Polya, 1957 ).

figure 1

Stages of mathematics problem solving

Figure  1 identifies the main stages that inform mathematics problem solving from the literature.

Problem identification and the design to solve the problem might be revisited if the procedures that were identified and their mathematical justification do not address the problem. Likewise, justification and evaluation after implementation might prompt the problem solver to realise that the problem was incorrectly identified. The loop is identified by the backward arrow, and the main problem-solving stages are identified by the linear arrows. The Australian Curriculum, Assessment and Reporting Authority notes that during problem solving:

Students solve problems when they use mathematics to represent unfamiliar situations, when they design investigations and plan their approaches, when they apply their existing knowledge to seek solutions, and when they verify that their answers are reasonable. Students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively. (Australia Curriculum and Reporting Authority, 2014 , p. 5)

Therefore, during problem solving, students have to plan the solution to the problem and be able to communicate all the key processes involved. However, although problem solving is highly recommended in mathematics education, it presents several challenges for teachers in terms of how they can best support students to connect the processes and mathematics concepts into something coherent that can lead to a meaningful solution (Hacker, 1998 ). Therefore, relevant tools that support problem solving and decision-making can make a difference for both mathematics teachers and students (McGowan & Boscia, 2016 ).

Students can solve problems better if they can think critically (Kules, 2016 ). Problem solving requires their active engagement in analysing, conceptualising, applying concepts, evaluating, comparing, sequencing, synthesising, reasoning, reflecting and communicating, which are skills that are said to promote critical thinking (Kim et al., 2012 ; King, 1995 ; Moon, 2008 ; QCAA, 2018 ). Similarly, the ability to undertake problem solving is supported when students are provided with the opportunity to sequence ideas logically and evaluate the optimal strategy to solve the problem (Parvaneh & Duncan, 2021 ). However, finding tools that can support problem solving has been a focus for researchers for a long time but with very limited breakthroughs (McCormick et al., 2015 ). This study explored how procedural flowcharts as visual representations can support students in organising ideas, execute procedures, justify solutions and communicate their solution.

Importance of visual representations in mathematics problem-solving

Research on how visual representations support mathematics discovery and structural thinking in problem solving has come a long way (see Hadamard, 1945 ; Krutetskii, 1976 ; Polya, 1957 ). Visual representations are classified as graphs, tables, maps, diagrams, networks and icons and are widely used to convey information in a recognisable form that can be easily interpreted without resorting to tedious computations (Lohse et al., 1994 ). Visual representations can be used as a tool to capture mathematics relations and processes (van Garderen et al., 2021 ) and used in many cognitive tasks such as problem solving, reasoning and decision making (Zhang, 1997 ). Indeed, representations can be modes of communicating during concepts exploration and problem solving (Roth & McGinn, 1998 ). Likewise, visual representations can be a powerful way of presenting the solution to a problem, including self-monitoring on how the problem is being solved (Kingsdorf & Krawec, 2014 ; Krawec, 2014 ). Using visualisations created by teachers or students in mathematics can support students’ problem-solving abilities (Csíkos et al., 2012 ).

Visual representations show thoughts in non-linguistic format, which is effective for communication and reflection. “Visual representations serve as tools for thinking about and solving problems. They also help students communicate their thinking to others” (NCTM, 2000 , p. 206). In mathematics, visual representation plays a significant role in showing the cognitive constructs of the solution (Owens & Clements, 1998 ), a view echoed by Arcavi ( 2003 ), who said that visual representations can be appreciated as a central part of reasoning and as a resource to use in problem solving. More importantly, they can be used to represent the logical progression of ideas and reasoning during problem solving (Roam, 2009 ). However, there is need to explore how visual representations can be used to support and illustrate the problem-solving process and to create connections among concepts (Stylianou, 2010 ). Importantly, developing diagrams is often a recommended strategy for solving mathematics problems (Pape & Tchoshanov, 2001 ; Jitendra et al., 2013 ; Zahner & Corter, 2010 ). Therefore, this study will explore the utility of procedural flowcharts as a visual representation and resource in supporting problem analysis, problem understanding, solution development and evaluation, while communicating the whole problem-solving process effectively. It will go further to explore how development of procedural flowcharts can support educational practice in Mathematical Methods subject.

Procedural flowcharts are a visual representation of procedures, corresponding steps and stages of evaluation of a solution to a problem (Chinofunga et al., 2022 ). These authors noted that procedural flowcharts developed by the teacher can guide students during the inquiry process and highlight key procedures and stages for decision-making during the process of problem solving. This is because “a procedural flowchart graphically displays the information–decision–action sequences in the proposed order” (Krohn, 1983 , p. 573). Similarly, Chinofunga and colleagues ( 2022 ) emphasised that procedural flowcharts can be used to visually represent procedural flexibility as more than one procedure can be accommodated, making it easier to compare the effectiveness of different procedures as they are being applied. They further posited that student-developed procedural flowcharts provide students with the opportunity to comprehensively engage with the problem and brainstorm different ways of solving it, thus deepening their mathematics knowledge. Moreover, a procedural flowchart can be a visual presentation of an individual or group solution during problem solving.

Research has identified extended benefits of problem solving in small groups (Laughlin et al., 2006 ). Giving groups an opportunity to present a solution visually can be a quicker way to evaluate a group solution because visual representations can represent large amounts of information (even from different sources) in a simple way (Raiyn, 2016 ). Equally, Vale and colleagues encouraged visual representation of solutions with multisolutions as a tool to teach students problem solving ( 2018 ). Therefore, students can be asked to develop procedural flowcharts individually then come together to synthesise different procedural flowcharts.

Similarly, flowcharts are a visual aid used to represent how procedures interrelate and function together. “They are tools to visually break down complex information into individual building blocks and how the blocks are connected” (Grosskinsky et al., 2019 , p. 24). They outlay steps in a procedure and show how they can be applied, thus helping to visualise the process (Ledin & Machin, 2020 ; Reingewertz, 2013 ). Flowcharts can also be used when a logical and sequenced approach is needed to address a problem (Cantatore & Stevens, 2016 ). Importantly, in schools, Norton and colleagues ( 2007 ) noted that “planning facilitated through the use of flow charts should be actively encouraged and scaffolded so that students can appreciate the potential of flow charts to facilitate problem-solving capabilities” (p. 15). This was because the use of flowcharts in problem solving provided a mental representation of a proposed approach to solve a task (Jonassen, 2012 ). The success of flowcharts in problem solving in different fields can be attributed to their ability to facilitate deep engagement in planning the solution to the problem.

Flowcharts use has distinct advantages that can benefit problem solving. Norton and colleagues ( 2007 ) posited that using a well-planned and well-constructed flowchart in problem solving results in a good-quality solution. Furthermore, flowcharts can also be a two-way communication resource between a teacher and students or among students (Grosskinsky et al., 2019 ). These authors further noted that flowcharts can help in checking students’ progress, tracking their progress and guide them. They can also be used to highlight important procedures that students can follow during the process of problem solving.

Similarly, flowcharts can be used to provide a bigger picture of the solution to a problem (Davidowitz & Rollnick, 2001 ). Flowcharts help students gain an overall and coherent understanding of the procedures involved in solving the problem as they promote conceptual chunking (Norton et al., 2007 ). Importantly, “they may function to amplify the zone of proximal development for students by simplifying tasks in the zone” (Davidowitz & Rollnick, 2001 , p. 22). Use of flowcharts by students reduces the cognitive load which then may help them focus on more complex tasks (Berger, 1998 ; Sweller et al., 2019 ). Indeed, development of problem-solving skills can be supported when teachers introduce learning tools such as flowcharts, because they can help structure how the solution is organised (Santoso & Syarifuddin, 2020 ). Therefore, the use of procedural flowcharts in mathematics problem solving has the potential to transform the process.

The research question in this study was informed by the understanding that limited resources are available to teachers to support students’ problem-solving abilities. In addition, the literature indicates that visual representation such as procedural flowcharts can support students’ potential in problem solving. Therefore, the research described in this study addressed the following research question: What are teachers’ perceptions of how procedural flowcharts can support the development of students’ problem-solving skills in the Mathematical Methods subject?

Methodology

The case study draws from the reflective investigation methodology (Trouche et al., 2018 ,  2020 ). The methodology explores how teaching and learning was supported by facilitating a teacher’s reflection on the unexpected use of a resource, in this case procedural flowcharts. The reflective methodology emphasises a teacher’s active participation through soliciting views on the current practice and recollection on previous work (Trouche et al., 2020 ). Using the methodology, a teacher is asked to reflect on and describe the resource used, the structure (related to the activity), the implementation and the outcomes (Huang et al., 2023 ).

This case study focuses on phases three and four of a broad PhD study that involved four phases. The broad study was informed by constructivism. Firstly, phase one investigated Queensland senior students’ mathematics enrolment in different mathematics curricula options from 2010 to 2020. Secondly, phase two developed and introduced pedagogical resources that could support planning, teaching and learning of calculus-based mathematics with a special focus on functions in mathematical methods. The pedagogical resources included a framework on mathematics content sequencing which was developed through literature synthesis to guide teachers on how to sequence mathematics content during planning. Furthermore, the phase also introduced concept maps as a resource for linking prior knowledge to new knowledge in a constructivist setting. Procedural flowcharts were also introduced to teachers in this phase as a resource to support development of procedural fluency in mathematics. Importantly, a conference workshop organised by the Queensland Association of Mathematics Teachers (Cairns Region) provided an opportunity for teachers to contribute their observations on ways that concept maps and procedural flowcharts can be used to support teaching. Thirdly, phase three was a mixed-method study that focused on evaluating the pedagogical resources that were developed or introduced in phase two with 16 purposively sampled senior mathematics teachers in Queensland who had been given a full school term to use the resources in their practice. Some qualitative data collected through semistructured interviews from phase three were included in the results of the study reported here. During the analysis of the qualitative data, a new theme emerged which pointed to the unexpected use of procedural flowcharts during teaching and learning beyond developing procedural fluency. As a result, the researchers decided to explore how development of procedural flowcharts supported teaching and learning of mathematics as an additional phase. Phase four involved an in-depth interview with Ms. Simon (pseudonym) a teacher who had unexpectedly applied procedural flowcharts in a problem-solving task, which warranted further investigation. Ms. Simon’s use of procedural flowcharts was unexpected as she had used them outside the context and original focus of the broader study. Importantly, in phase four, artefacts created by the teacher and her four students in the problem-solving task were also collected.

Ms. Simon (pseudonym) had explored the use of procedural flowcharts in a problem-solving and modelling task (PSMT) in her year 11 Mathematical Methods class. This included an introduction to procedural flowcharts, followed by setting the students a task whereby they were asked to develop a procedural flowchart as an overview on how they would approach a problem-solving task. The students were expected to first develop the procedural flowcharts independently then to work collaboratively to develop and structure an alternative solution to the same task. The student-developed procedural flowcharts (artefacts) and the in-depth interview with Ms. Simon were included in the analysis. As this was an additional study, an ethics amendment was applied for and granted by the James Cook University Ethics committee, approval Number H8201, as the collection of students’ artefacts was not covered by the main study ethics approval for teachers.

Research context of phase four of the study

In the state of Queensland, senior mathematics students engage with three formal assessments (set by schools but endorsed by QCAA) in year 12 before the end of year external examination. The formal internal assessments consist of two written examinations and a problem-solving and modelling task (PSMT). The PSMT is expected to cover content from Unit 3 (Further Calculus). The summative external examination contributes 50% and the PSMT 20% of the overall final mark, demonstrating that the PSMT carries the highest weight among the three formal internal assessments.

The PSMT is the first assessment in the first term of year 12 and is set to be completed in 4 weeks. Students are given 3 h of class time to work on the task within the 4 weeks and write a report of up to 10 pages or 2000 words. The 4 weeks are divided into four check points, one per week with the fourth being the submission date. On the other three checkpoints, students are expected to email their progress to the teacher. At checkpoint one, the student will formulate a general plan on how to solve the problem which is detailed enough for the teacher to provide meaningful feedback. Checkpoint one is where this study expects teachers to provide students with the opportunity to develop a procedural flowchart of the plan to reach the solution. Importantly at checkpoint one, teachers are interested in understanding which mathematics concepts students will select and apply to try and solve the problem and how the concepts integrate or complement each other to develop a mathematically coherent, valid and appropriate solution. Moreover, teachers are expected to have provided students with opportunities to develop skills in undertaking problem-solving and modelling task before they engage with this formal internal assessment. The QCAA has provided a flowchart to guide teachers and students on how to approach a PSMT ( Appendix 1 )

Participants in phase four of the study

Ms. Simon and a group of four students were the participants in this study. Ms. Simon had studied mathematics as part of her undergraduate education degree, which set her as a highly qualified mathematics teacher. At the time of this study, she was the Head of Science and Mathematics and a senior mathematics teacher at one of the state high schools in Queensland. She had 35 years’ experience in teaching mathematics across Australia in both private and state schools, 15 of which were as a curriculum leader. She was also part of the science, technology, engineering and mathematics (STEM) state-wide professional working group. Since the inception of the external examination in Queensland in 2020, she had been an external examination marker and an assessment endorser for Mathematical Methods with QCAA. The students who were part of this study were aged between 17 and 18 years and were from Ms. Simon’s Mathematical Methods senior class. Two artefacts were from individual students, and the third was a collaborative work from the two students.

Phase four data collection

First, data were collected through an in-depth interview between the researcher and Ms. Simon. The researcher used pre-prepared questions and incidental questions arising from the interview. The questions focused on exploring how she had used procedural flowcharts in a PSMT with her students. The interview also focused on her experiences, observations, opinions, perceptions and results, comparing the new experience with how she had previously engaged her students in such tasks. The interview lasted 40 min, was transcribed and coded so as to provide evidence of the processes involved in the problem solving. Some of the pre-prepared questions were as follows:

What made you consider procedural flowcharts as a resource that can be used in a PSMT?

How have you used procedural flowcharts in PSMT?

How has the use of procedural flowcharts transformed students’ problem-solving skills?

How have you integrated procedural flowcharts to complement the QCAA flowchart on PSMT in mathematics?

What was your experience of using procedural flowcharts in a collaborative setting?

How can procedural flowcharts aid scaffolding of problem-solving tasks?

Second, Ms. Simon shared her formative practice PSMT task (described in detail below), and three of her students’ artefacts. The artefacts that she shared (with the students’ permission) were a critical source of data as they were a demonstration of how procedural flowcharts produced by students can support the development of problem solving and provided an insight into the use of procedural flowcharts in a PSMT.

Problem-solving and assessment task

The formative practice PSMT that Ms. Simon shared is summarised below under the subheadings: Scenario, Task, Checkpoints and Scaffolding.

You are part of a team that is working on opening a new upmarket Coffee Café. Your team has decided to cater for mainly three different types of customers. Those who:

Consume their coffee fast.

Have a fairly good amount of time to finish their coffee.

Want to drink their coffee very slowly as they may be reading a book or chatting.

The team has tasked you to come up with a mode or models that can be used to understand the cooling of coffee in relation to the material the cup is made from and the temperature of the surroundings.

Write a mathematical report of at most 2000 words or up to 10 pages that explains how you developed the cooling model/s and took into consideration the open cup, the material the cup was made from, the cooling time, the initial temperature of the coffee and the temperature of the surroundings.

Design an experiment that investigates the differences in the time of cooling of a liquid in open cups made from different materials. Record your data in a table.

Develop a procedural flowchart that shows the steps that you used to arrive at a solution for the problem.

Justify your procedures and decisions by explaining mathematical reasoning.

Provide a mathematical analysis of formulating and evaluating models using both mathematical manipulation and technology.

Provide a mathematical analysis that involves differentiation (rate of change) and/or anti-differentiation (area under a curve) to satisfy the needs of each category of customers.

Evaluate the reasonableness of solutions.

You must consider Newton’s Law of Cooling which states that the rate of change of the temperature of an object is proportional to the difference between its own temperature and the temperature of its surroundings. For a body that has a higher temperature than its surroundings, Newton’s Law of Cooling can model the rate at which the object is cooling in its surroundings through an exponential equation. This equation can be used to model any object cooling in its surroundings: 

y is the difference between the temperature of the body and its surroundings after t minutes,

A 0 is the difference between the initial temperature of the body and its surroundings,

k is the cooling constant.

Checkpoints

Week 1: Students provide individual data from the experiment and create a procedural flowchart showing the proposed solution to the problem. Teacher provides individual feedback. Week 2: Students provide a consolidated group procedural flowchart. Teacher provides group feedback Week 3: Students email a copy of their individually developed draft report for feedback. Week 4: Students submit individual final response in digital (PDF format) by emailing a copy to their teacher, providing a printed copy to their teacher and saving a copy in their Maths folder.

Additional requirements/instructions

The response must be presented using an appropriate mathematical genre (i.e., a mathematical report).

The approach to problem-solving and mathematical modelling must be used.

All sources must be referenced.

Data analysis

The analysis of data includes some observations and perceptions of mathematics teachers which were collected through surveys and interviews from phase three of the broader PhD study. The survey and interviews data in the broader study including phase four in-depth interview with Ms. Simon were transcribed and coded using thematic analysis (TA). TA is widely used in qualitative research to identify and describe patterns of meaning within data (Braun & Clarke, 2006 ; Ozuem et al., 2022 ). The thematic validity was ensured using theory triangulation. It involves sharing qualitative responses among colleagues at different status positions in the field and then comparing findings and conclusions (Guion et al., 2011 ). The study adopted the inductive approach which produces codes that are solely reflective of the contents of the data (Byrne, 2022 ).

Coding was done with no pre-set codes, and line-by-line coding was used as this was mainly an inductive analysis. The research team comprising of the researcher and two advisors/supervisors met to set the initial coding mechanism and code part of the data for consistency before independent coding of all the data. This is supported by King ( 2004 ) who suggested that when searching for themes, it is best to start with a few codes to help guide analysis. The data covered a wide variety of concepts, so initially the different concepts that grouped the research questions as ‘conceptual themes’ were utilised to organise the data. The research team examined the codes, checking their meaning and relationships between them to determine which ones were underpinned by a central concept. In Excel, codes that shared a core idea from the initial phase that used data from the open-ended responses and interview transcripts were colour coded. After the independent thematic analysis, the filter function in Excel was used to sort the codes using cell colour. Moreover, Excel provided the opportunity to identify duplicates as codes were collated from the three researchers. Same coloured codes were synthesised to develop a general pattern of meaning, which we referred to as candidate themes. The sorting and collation approach would bring together all codes under each theme which then would facilitate further analysis and review (Bree et al., 2014 ).

The research team went on to review the relationship of the data and the codes that informed the themes. This is supported by Braun and Clarke ( 2012 , 2021 ) who posited that researchers should conduct a recursive review of the candidate themes in relation to the coded data items and the entire dataset. During the review, whenever themes were integrated or codes were moved to another theme, a new spreadsheet was created so that if further review was necessary, the old data and layout would still be available. Importantly, if the codes form a coherent and meaningful pattern, the theme makes a logical argument and may be representative of the data (Nowell et al., 2017 ). Furthermore, the team also reviewed the themes in relation to the data. This is because Nowell and others posited that themes should provide the most accurate interpretation of the data. The research team also discussed and wrote detailed analysis for each candidate theme identifying the main story behind each theme and how each one fit into the overall story about the data through the lens of the research questions. Finally, the researchers also linked quotes to final themes reached during the analysis. Illustrating findings with direct quotations from the participants strengthen the face validity and credibility of the research (Bryne, 2022 ; Patton, 2002 ; Nowell et al., 2017 ).

Student artefacts

The students’ artefacts (procedural flowcharts) in Figs.  5 , 6 and 7 were analysed using content analysis. Content analysis can be used to analyse written, verbal or visual representations (Cole, 1988 ; Elo & Kyngäs, 2008 ). Content analysis is ideal when there is a greater need to identify critical processes (Lederman, 1991 ). Unlike interviews, documents that are ideal for qualitative analysis should be developed independently without the researcher’s involvement (Merriam & Tisdell, 2015 ). In fact, the documents should not have been prepared for the purpose of research (Hughes & Goodwin, 2014 ), hence they are a stable and discrete data source (De Massis & Kotlar, 2014 ; Merriam & Tisdell, 2015 ). The students’ artefacts used in this study were not prepared for the purpose of the study but as a mathematics task. Deductive content analysis is used when the structure of analysis is implemented on the basis of previous knowledge and the purpose of the study is model testing or confirmation (Burns & Grove, 2009 ). Similarly, it is an analytical method that aims to test existing concepts, models or hypotheses in a new context (Kyngäs et al., 2020 ). They went further to note that researchers can use deductive analysis to determine how a model fit a new context.

Deductive content analysis follows three main stages: preparation, organising and reporting (Elo et al., 2014 ; Elo & Kyngäs, 2008 ). Firstly, preparation involves identifying the unit of analysis (Guthrie et al., 2004 ). In this study, the unit of analysis are the artefacts developed by the students. Furthermore, the phase requires the researcher to be immersed in the data reading and digesting to make sense of the whole set of data through reflexivity, open-mindedness and following the rationale of what guided participants’ narratives or in developing the artefact (Azungah, 2018 ). Secondly, a categorisation matrix based on existing knowledge should be developed or identified to facilitate the coding of the data according to categories (Hsieh & Shannon, 2005 ) (Table  1 ). Importantly, when using deductive content analysis, researchers require a theoretical structure or model from which they can build an analysis matrix (Kyngäs et al., 2020 ). Finally, the analysis results should be reported in ways that promote interpretation of the data and the results, for example, in tabular form (Elo & Kyngäs, 2008 ) (Fig.  2 ).

figure 2

Stages followed during analysis of procedural flowcharts

The students’ procedural flowcharts were coded and interpreted on how they respond to different stages of problem solving. The researcher’s codes, interpretations and findings should be clearly derived and justified using the available data and then inform conclusions and interpretations for confirmability (Tobin & Begley, 2004 ). The artefacts were shared between the researcher and his supervisors; the analysis was done independently then reviewed by the researcher and his supervisors. Schreier ( 2012 ) recommended that analysis should be done by more than one person to promote thoroughness and broaden the interpretation of the data. Schreier went further to note that if the categorisation matrix is clear and of high quality, the coding should produce very little discrepancies. Very little discrepancies were observed except that some stages on the students’ procedural flowcharts overlapped between skills.

This section presents results from the analysis of the interviews data and student artefacts.

Semi-structured interviews

The thematic analysis of interviews resulted in two themes:

The utility of procedural flowcharts in supporting mathematics problem solving.

The utility of procedural flowcharts in supporting the integration of the four stages of mathematics problem solving.

In phase three, which prompted the targeted phase four study described in this study, teachers were asked the question, “How have you used procedural flowcharts to enhance teaching and learning of mathematics?” The question was not specific to problem solving but the teachers’ observations and perceptions strongly related to problem-solving and student-centred learning.

Theme 1 The utility of procedural flowcharts generally supports mathematics problem solving

The visual nature of procedural flowcharts was seen as an advantage to both teachers and students. For students, drawing a flowchart was easier than writing paragraphs to explain how they had arrived at the intended solution. For teachers, the flowchart was easier to process for timely feedback to students. Developing a procedural flowchart at the first checkpoint in the PSMT allows teachers to provide valuable feedback as the procedural flowchart can be used to represent several processes compared to written because of its visual nature. Engagement can be promoted because students can use the targeted feedback to improve their solutions as they will have provided a detailed overview of how they propose to solve the problem.

They present steps in diagrammatic form which is easy to process and easy to understand and process… students prefer them more as its in diagrammatic form and I have witnessed more students engaging. (Participant 8, phase three study) I find it (visual) a really efficient way for me to look at the proposed individual students processes and provide relevant feedback to the student or for the student to consider. And, you know, once the students are comfortable with using these procedural flowcharts you know, I find it much easier for me to give them relevant feedback, and I actually find that feedback more worthwhile than feedback we used to give them, you know, that was just based on what they wrote in paragraphs,…students get to practice in creating their own visual display, which communicates their intended strategies to solve the problem, then they have opportunities to use it, and fine tune it as they work out the problem … student developed procedural flow charts, they represent a student’s maths knowledge in a visual way. (Ms. Simon).

Identifying students’ competencies early was seen as central to successful problem solving as it provided opportunities for early intervention. Results showed that teachers viewed procedural flowcharts as a resource that could be used to identify gaps in skills, level of understanding and misconceptions that could affect successful and meaningful execution of a problem-solving task. Going through a student-developed flowchart during problem solving provided the teachers with insight into the student’s level of understanding of the problem and how the effectiveness of the procedures proposed to address the problem. This is critical for tasks that require students to develop a report detailing the solution at the end of developing the solution. Teachers can get the opportunity to gain an insight of the proposed solution before the student commit to write the report. The procedural flowchart provides the bigger picture of the solution plan which might expose gaps in knowledge.

I found it quite useful because I can identify what kids or which kids are competent in what, which sort of problem-solving skills. And I can identify misconceptions that students have or gaps in students understanding. (Participant 1, phase three study) It also to me highlights gaps in students’ knowledge in unique ways that students intend to reach a solution because the use of the procedural flow chart encourages students to explain the steps or procedures behind any mathematical manipulation that you know they're intending to use. And it's something that was much more difficult to determine prior to using procedural flow charts… I've also used you know, student developed procedural flow charts to ascertain how narrow or wide the students’ knowledge is and that's also something that wasn't obvious to make a judgement about prior to using procedural flow charts. (Ms. Simon)

Problem solving was seen as student-centred. If procedural flowcharts could be used to support problem solving, then they could facilitate an environment where students were the ones to do most of the work. The students could develop procedural flowcharts showing how they will solve a PSMT task using concepts and procedures they have learnt. The open-ended nature of the problem in a PSMT provides opportunities for diverse solutions that are validated through mathematical justifications. The visual nature of procedural flowcharts makes them more efficient to navigate compared to text.

Mathematics goes from being very dry and dusty to being something which is actually creative and interesting and evolving, starting to get kids actually engaging and having to back themselves. (Participant 7, phase three study) As a teacher, I find that procedural flowcharts are a really efficient way to ascertain the ways that students have considered and how they are going to solve a problem … It engages the students from start to finish, you know in different ways this method demands students to compare, interpret, analyse, reason, evaluate, and to an extent justify as they develop this solution. (Ms. Simon)

Similarly, results showed that procedural flowcharts could be used as a resource to promote collaborative learning and scaffolding. Students could be asked to collaboratively develop a procedural flowchart or could be provided with one to follow as they worked towards solving the problem. Collaborative development of procedural flowcharts can support problem solving as students can bring their different mathematical understanding to develop a solution from different perspectives.

Sometimes, you know, I get students to work on it in groups as they share ideas and get that mathematisation happening. So, it's really helpful there … I looked at the PSMT and its Marking Guide, and develop a more detailed procedural flowchart for students to use as a scaffold to guide them through the process. So, procedural flowcharts provide a structure in a more visual way for students to know what to do next. (Ms. Simon)

Ms. Simon shared her detailed procedural flowchart in Fig.  3 that she used to guide students in PSMTs.

figure 3

Ms. Simon’s procedural flowchart on problem solving

The participants also observed that procedural flowcharts could be used to promote opportunities for solution evaluation which played an important role in problem solving. Loops can be introduced in procedural flowcharts to provide opportunities for reflection and reasoning as alternative paths provide flexibility while the solution is being developed. Following Fig.  4 are participants’ comments referring to the figure which was among procedural flowcharts shared with participants as examples of how they can be used to teach syllabus identified Mathematical Methods concepts. The Mathematical Methods syllabus expects students to “recognise the distinction between functions and relations and use the vertical line test to determine whether a relation is a function” (QCAA, 2018 p. 20).

The cycle approach, the feeding back in the feeding back out that type of stuff, you know, that is when we starting to teach students how to think . (Participant 7, phase three study) Complex procedural flowcharts like the one you provided guide students in making key decisions as they work through solutions which is key to critical thinking and judgement and these two are very important in maths. (Participant 8, phase three study) I also sincerely believe that procedural flowcharts are a way to get students to develop and demonstrate the critical thinking skills, which PSMTs are designed to assess. Students inadvertently have to use their critical thinking skills to analyse and reason as they search for different ways to obtain a solution to the problem presented in the PSMT … the use of procedural flowcharts naturally permits students to develop their critical thinking skills as it gets their brain into a problem-solving mode as they go through higher order thinking skills such as analysis, reasoning and synthesis and the like … this visual way of presenting solution provides students with opportunities to think differently, which they're not used to do, and it leads them to reflect and compare. (Ms. Simon)

figure 4

Procedural flowchart on distinguishing functions and relations

Problem solving of non-routine problems uses a structure that should be followed. Resources that are intended to support problem solving in students can be used to support the integration of the stages involved in problem solving.

Theme 2 The utility of procedural flowcharts in supporting the integration of the four stages of mathematics problem solving.

Procedural flowcharts can support the flow of ideas and processes in the four stages during problem-solving and modelling task in Mathematical Methods subject. Literature synthesis in this study identified the four stages as:

Identification of problem and mathematics strategies than can solve the problem.

Implementation.

Evaluation and justification.

Communicating the solution.

Similarly, QCAA flowchart on PSMT identifies the four stages as formulate, solve, evaluate and verify, and communicate.

The logical sequencing of the stages of mathematics problem solving is crucial to solving and communicating the solution to the problem. Development of procedural flowcharts can play an important role in problem solving through fostering the logical sequencing of processes to reach a solution. Participants noted that the development of procedural flowcharts provides opportunities for showing the flow of ideas and processes which lay out an overview of how different stages connect into a bigger framework of the solution. Furthermore, it can help show how different pieces of a puzzle interconnect, in this case how all the components of the solution interconnect and develop to address the problem. In fact, procedural flowcharts can be used to show how the different mathematics concepts students have learnt can be brought together in a logical way to respond to a problem.

Procedural flowcharts help students sum up and connect the pieces together… connect the bits of knowledge together. (Participant 4, phase three study) Really good how it organises the steps and explains where you need to go if you're at a certain part in a procedure. (Participant 2, phase three study) Potentially, it's also an excellent visual presentation, which shows a student's draft of their logical sequence of processes that they're intending to develop to solve the problem … So, the steps students need to follow actually flows logically. So really given a real-life scenario they need to solve in a PSMT students need to mathematise it and turn it into a math plan, where they execute their process, evaluate and verify it and then conclude … so we use procedural flowcharts to reinforce the structure of how to approach problem-solving … kids, you know, they really struggling, you know, presenting things in a logical way, because they presume that we know what they're thinking . (Ms. Simon)

Developing procedural flowcharts provided students with opportunities to plan the solution informed by the stages of problem solving. Teachers could reinforce the structure of problem solving by telling students what they could expect to be included on the procedural flowchart. Procedural flowcharts can be used as a visual tool to highlight all the critical stages that are included during the planning of the solution.

I tell the students, “I need to see how you have interpreted the problem that you need to solve. I need to see how you formulated your model that involves the process of mathematisation, where you move from the real world into the maths world, and I need to see all the different skills you're intending to use to arrive at your solution.” (Ms. Simon)

Similarly, procedural flowcharts could visually represent more than one strategy in the “identify and execute mathematics procedures that can solve the problem” stage, thereby providing a critical resource to demonstrate flexibility. When there are multiple ways of addressing a problem, developing a procedural flowchart can provide an opportunity of showing all possible paths or relationships between different paths to the solution, thus promoting flexibility. Procedural flowcharts provide an opportunity to show how different procedures can be used or integrated to solve a problem.

Students are expected to show evidence that they have the knowledge of solving the problem using several ways to get to the same solution. So, it goes beyond the students’ preferred way of answering a question and actually highlights the importance of flexibility when it comes to processes and strategies of solving a problem … By using procedural flowcharts, I'm saying to the students, “Apart from your preferred way of solving the problem, give me a map of other routes, you can also use to get to your destination.” (Ms. Simon)

The results also indicated that procedural flowcharts could be used to identify strengths and limitations of procedures in the “evaluate solution” stage and thus demonstrate the reasonableness of the answer. Having more than one way of solving a problem on a procedural flowchart helps in comparing and evaluating the most ideal way to address the problem.

And I'm finding that, you know, as students go through, and they compare the different processes, you know, the strengths and limitations, literally stare them in the face. So, they don't have to. They're not ... they don't struggle as much as they used to in coming up with those sorts of answers … it's also a really easy way that once the students reach the next phase, which is the evaluating verified stage, they can go back to their procedural flow chart and identify and explain strengths and limitations of their model … It's a convenient way for students to show their reasonableness of their solution by comparing strengths and weaknesses of all the strategies presented on the procedural flowchart, something that they've struggled with in the past. (Ms. Simon)

The results from the interview show that the procedural flowcharts supported efficient communication of the steps to be followed in developing the solution to the problem. Student-developed procedural flowcharts allowed the teacher to have an insight and overview of the solution to the problem earlier in the assessment task. In addition, they provided an alternative way of presenting their solution to the teacher.

I expect students to use the procedural flowchart as a way to communicate to me how they're planning to solve the scenario in the PSMT…It's also one of the parts that students are expected to hand in to me on one of the check points, and I find it a really efficient way for me to look at, you know, a proposed individual students processes, and provide relevant feedback to the student to consider in a really efficient way…I just found that it helps students communicate their solution to a problem in lots of different ways that challenges students to logically present a solution. (Ms. Simon)

She went on to say,

Students also found it challenging to communicate their ideas in one or two paragraphs, when more than one process or step was required to solve the problem. So, I found that, you know, procedural flowcharts, have filled this gap really nicely, as that provides students with a simple tool that they can use to present a visual overview of the processes they've chosen to use to solve the problem. And so, for me, as a teacher, procedural flowcharts are an efficient way for me to scan the intended processes that an individual student is proposing to use to solve the problem in their authentic way and provide them with valuable feedback.

In summary, the teacher’s experiences, views and perceptions showed that procedural flowcharts can be a valuable resource in supporting students in all four stages of problem solving.

Students’ artefacts

The student-generated flowcharts in this part of the research gave an insight into students’ understanding as they planned how to solve the problem presented to them. Students were expected to use the problem-solving stages to successfully develop solutions to problems. Their de-identified procedural flowcharts are shown in Figs.  5 , 6 and 7 .

figure 5

Procedural flowchart developed by student 1

figure 6

Procedural flowchart developed by student 2

figure 7

Collaboratively developed procedural flowchart

Students 1 and 2 also collaboratively developed a procedural flowchart, shown as Fig.  7 .

This discussion is presented as two sections: (1) how developing procedural flowcharts can support mathematics problem solving and (2) how developing procedural flowcharts support the integration of the different stages of mathematics problem solving. This study although limited by sample size highlighted how developing procedural flowcharts can support mathematics problem solving, can reinforce the structure of the solution to a problem and can help develop metacognitive skills among students. The different stages involved in problem solving inform the process of developing the solution to the problem. The focus on problem-based learning has signified the need to introduce resources that can support students and teachers in developing and structuring solutions to problems. Results from this study have also provided discussion points on how procedural flowcharts can have a positive impact in mathematics problem solving.

Procedural flowcharts can support mathematics problem solving

Procedural flowcharts help in visualising the process of problem solving. The results described in this study show that student-generated flowcharts can provide an overview of the proposed solution to the problem. The study noted that students preferred developing procedural flowcharts rather than writing how they planned to find a solution to the problem. The teachers also preferred visual aids because they were easier and quicker to process and facilitated understanding of the steps taken to reach the solution. These results are consistent with the findings of other researchers (McGowan & Boscia, 2016 ; Raiyn, 2016 ). The results are also consistent with Grosskinsky and colleagues’ ( 2019 ) findings that flowcharts break complex information into different tasks and show how they are connected, thereby enhancing understanding of the process. Consequently, they allow teachers to provide timely feedback at a checkpoint compared to the time a teacher would take to go through a written draft. Procedural flowcharts connect procedures and processes in a solution to the problem (Chinofunga et al., 2022 ). Thus, the feedback provided by the teacher can be more targeted to a particular stage identified on the procedural flowchart, making the feedback more effective and worthwhile. The development of a procedural flowchart during problem solving can be viewed as a visual representation of students’ plan and understanding of how they plan to solve the problem as demonstrated in Figs.  5 , 6 and 7 .

In this study, Ms. Simon noted that procedural flowcharts can represented students’ knowledge or thinking in a visual form, which is consistent with Owens and Clements’ ( 1998 ) findings that visual representations are cognitive constructs. Consequently, they can facilitate evaluation of such knowledge. This study noted that developing procedural flowcharts can provide opportunities to identify gaps in students’ understanding and problem-solving skills. It also noted that providing students with opportunities to develop procedural flowcharts may expose students’ misconceptions, the depth and breadth of their understanding of the problem and how they plan to solve the problem. This is supported by significant research (Grosskinsky et al., 2019 ; Norton et al., 2007 ; Vale & Barbosa, 2018 ), which identified flowcharts as a resource in helping visualise and recognise students’ understanding of a problem and communication of the solution. Thus, providing teachers with opportunities to have an insight into students’ thinking can facilitate intervention early in the process. The results in this study showed that when students develop their own plan on how to respond to a problem, they are at the centre of their learning. However, scaffolding and collaborative learning can also support problem solving.

Vygotsky ( 1978 ) posited that in the Zone of Proximal Development, collaborative learning and scaffolding can facilitate understanding. In this study, the results indicated that a teacher-developed procedural flowchart can be used to guide students in developing a solution to a problem. These results are consistent with Davidowitz and Rollnick’s study that concluded that flowcharts provide a bigger picture of how to solve the problem. In Queensland, the QCAA has developed a flowchart (see Appendix 1 ) to guide schools on problem-solving and modelling tasks. It highlights the significant stages to be considered during the process and how they relate to each other. Teachers are encouraged to contextualise official documents to suit their school and classes. In such cases, a procedural flowchart acts as a scaffolding resource in directing students on how to develop the solution to the problem. The findings are consistent with previous literature that flowcharts can give an overall direction of the process, help explain what is involved, may help reduce cognitive load and allow students to focus on complex tasks (Davidowitz & Rollnick, 2001 ; Norton et al., 2007 ; Sweller et al., 2019 ).

In addition to being a scaffolding resource, results showed that procedural flowcharts can be developed collaboratively providing students with an opportunity to share their solution to the problem. Being a scaffolding resource or a resource to use in a community of learning highlights the importance of procedural flowcharts in promoting learning within a zone of proximal development, as posited by Davidowitz and Rollnick ( 2001 ). Scaffolding students to problem solve and develop procedural flowcharts collaboratively provides students with the opportunity to be at the centre of problem solving.

Research has identified problem solving as student-centred learning (Ahmad et al., 2010 ; Karp & Wasserman, 2015 ; Reinholz, 2020 ; Vale & Barbosa, 2018 ). The process of developing the procedural flowcharts as students plan for the solution provides students with opportunities to engage more with the problem. Results showed that when students developed procedural flowcharts themselves, mathematics learning transformed from students just being told what to do or follow procedures into something creative and interesting. As students develop procedural flowcharts, they use concepts they have learnt to develop a solution to an unfamiliar problem (Matty, 2016 ), thus engaging with learning from the beginning of the process until they finalise the solution. The results indicated that developing procedural flowcharts promoted students’ ability to not only integrate different procedures to solve the problem but also determine how and when the conditions were ideal to address the problem, providing opportunities to justify and evaluate the procedures that were used.

Deeper understanding of mathematics and relationships between concepts plays an important role in problem solving, and the results from this study showed that different procedures can be integrated to develop a solution to a problem. The participants observed that developing procedural flowcharts could support the brainstorming ideas as they developed the flowchart, as ideas may interlink in a non-linear way. Moreover, students are expected at different stages to make key decisions about the direction they will need to take to reach the solution to the problem, as more than one strategy may be available. For example, student 1 planned on using only technology to develop the models while student 2 considered both technology and algebra. This showed that student 2 applied flexibility in using alternative methods, thus demonstrating a deeper understanding of the problem. Equally important, Ms. Simon observed that as students developed their procedural flowcharts while planning the steps to reach a solution, they were required to analyse, conceptualise, reason, analyse, synthesise and evaluate, which are important attributes of deeper understanding. Fostering deeper understanding of mathematics is the key goal of using problem solving (Kim et al., 2012 ; King, 1995 ; Moon, 2008 ; QCAA, 2018 ). The results are additionally consistent with findings from Owens and Clements ( 1998 ) and Roam ( 2009 ), who posited that visual aids foster reasoning and show cognitive constructs. Similarly, logical sequencing of procedures and ways to execute a strategy expected when developing procedural flowchart can support deeper understanding, as posited by Parvaneh and Duncan ( 2021 ). When developing procedural flowchart, students are required to link ideas that are related or feed into another, creating a web of knowledge. Students are also required to identify the ways in which a concept is applied as they develop a solution, and this requires deeper understanding of mathematics. Working collaboratively can also support deeper and broader understanding of mathematics.

The procedural flowchart that was developed collaboratively by the two students demonstrated some of the skills that they did not demonstrate in their individual procedural flowcharts. Like student 2, the collaboratively developed flowchart included use of technology and algebra to determine the models for the three different cups. The students considered both rate of change and area under a curve in the task analysis. Apart from planning to use rate at a point, average rate and definite integration, they added the trapezoidal rule. Both average rate and definite integration were to be applied within the same intervals, building the scope for comparison. The trapezoidal rule would also compare with integration. The complexity of the collaboratively developed procedural flowchart concurred with Rogoff and others ( 1984 ) and Stone ( 1998 ), who suggested that a community of learning can expand current skills to higher levels than individuals could achieve on their own. It seems the students used the feedback provided by the teacher on their individually developed procedural flowcharts as scaffolding to develop a much more complex procedural flowchart with competing procedures to address the problem. Their individually developed flowcharts might have acted as reference points, as their initial plans were still included in the collaboratively developed plan but with better clarity. This observation is consistent with Guk and Kellogg ( 2007 ), Kirova and Jamison ( 2018 ) and Ouyang and colleagues ( 2022 ), who noted that scaffolding involving peers, teacher and other resources enhances complex problem-solving tasks and transfer of skills.

Supporting the integration of the different stages of mathematics problem solving

When students develop procedural flowcharts, it supports the logical sequencing of ideas from different stages into a process that ends with a solution. Problem solving follows a proposed order and procedural flowcharts visually display decision and/or action sequences in a logical order (Krohn, 1983 ). They are used when a sequenced order of ideas is emphasised, such as in problem solving (Cantatore & Stevens, 2016 ). This study concurs with Krohn, Cantatore and Stevens, as the results showed that procedural flowcharts could be used to organise steps and ideas logically as students worked towards developing a solution. Students’ procedural flowcharts are expected to be developed through the following stages: problem identification, problem mathematisation, planning and execution and finally evaluation. Such a structure can be reinforced by teachers by sharing a generic problem-solving flowchart outlining the stages so that students can then develop a problem-specific version. Importantly, students’ artefacts in Figs.  5 , 6 and 7 provided evidence of how procedural flowcharts support the different stages of problem-solving stages to create a logical and sequential flow of the solution (see Appendix 1 ). Similarly, Ms. Simon noted that while her students had previously had problems in presenting the steps to their solution in a logical way, she witnessed a significant improvement after she asked them to develop procedural flowcharts first. Further, the results are consistent with Chinofunga et al.’s ( 2022 ) work that procedural flowcharts can support procedural flexibility, as they can accommodate more than one procedure in the “identify and execute mathematics procedures that can solve the problem” stage. Thus, stages that require one procedure or more than one procedure can all be accommodated in a single procedural flowchart. Evaluating the different procedures is also a key stage in problem solving.

As students develop the solution to the problem and identify ways to address the problem, they also have to evaluate the procedures, reflecting on the limitations and strengths of the solutions they offer. Ms. Simon observed that her students had previously struggled with identifying strengths and weaknesses of different procedures. However, she noted that procedural flowcharts gave students the opportunity to reflect and compare as they planned the solution. For example, students could have the opportunity to reflect and compare rate at a point, average rate and integration so they can evaluate which strategy can best address he problem. The artefacts identified the different procedures the students used in planning the solution, enabling them to evaluate the effectiveness of each strategy. Thus, enhancing students’ capacity to make decisions and identify the optimal strategy to solve a problem aligns with the work of McGowan and Boscia ( 2016 ). Similarly, Chinofunga and colleagues’ findings noted that developing procedural flowcharts can be effective in evaluating different procedures as they can accommodate several procedures. The different stages that need to be followed during problem solving and the way the solution to the problem is logically presented are central to how the final product is communicated.

In this study, procedural flowcharts were used to communicate the plan to reach the solution to a problem. The length of time given to students to work on their problem-solving tasks in Queensland is fairly long (4 weeks) and students may struggle to remember some key processes along the way. Developing procedural flowcharts to gain an overview of the solution to the problem and share it with the teacher at an early checkpoint is of significant importance. In this study, Ms. Simon expected her students to share their procedural flowcharts early in the process for her to give feedback, thus making the flowcharts a communication tool. The procedural flowcharts developed by the students in Figs.  5 , 6 and 7 show how students proposed solving the problem. This result lends further support to the NCTM ( 2000 ) findings that visual representations can help students communicate their thinking before applying those thoughts to solving a problem. Ms. Simon also noted that before introducing students to procedural flowcharts, they did not have an overall coherent structure to follow, which presented challenges when they wanted to communicate a plan that involved more than one strategy. However, the students’ artefacts were meaningful, clearly articulating how the solution to the problem was being developed, thus demonstrating that procedural flowcharts can provide the structure that supports the coherent and logical communication of the solution to the problem by both teachers and students (Norton et al., 2007 ). The visual nature of the students’ responses in the form of procedural flowcharts is key to communicating the proposed solution to the problem.

Visual representations are a favourable alternative to narrative communication. Procedural flowcharts can help teachers to check students’ work faster and provide critical feedback in a timely manner. Ms. Simon noted that the use of procedural flowcharts provided her with the opportunity to provide feedback faster and more effectively earlier in the task because the charts provided her with an overview of the whole proposed solution. Considering that students are expected to write a report of 2000 words or 10 pages on the task, the procedural flowchart provides the opportunity to present large amounts of information in just one visual representation. Raiyn ( 2016 ) noted that visual representations can be a quicker way to evaluate a solution and represent large amounts of information.

The procedural flowcharts that were created by students in this study demonstrate that they can be effective in supporting the development of problem-solving skills. This study suggests that including procedural flowcharts in problem solving may support teachers and students in communicating efficiently about how to solve the problem. For students, it is a resource that provides the solution overview, while teachers can consider it as a mental representation of students’ thinking as they plan the steps to reach a solution. Student-developed procedural flowcharts may represent how a student visualises a solution to a problem after brainstorming different pathways and different decision-making stages.

Moreover, as highlighted in this study, the visual nature of procedural flowcharts may offer a diverse range of support for problem solving. Procedural flowcharts make it easy to process and provide timely feedback that in turn might help students engage with the problem meaningfully. Furthermore, they may also provide a structure of the problem-solving process and guide students through the problem-solving process. Navigating through stages of problem solving might be supported by having students design procedural flowcharts first and then execute the plan. Indeed, this study showed that the ability of procedural flowcharts to represent multiple procedures, evaluation stages or loops and alternative paths helps students reflect and think about how to present a logically cohesive solution. Importantly, procedural flowcharts have also been identified as a resource that can help students communicate the solution to the problem. Procedural flowcharts have been noted to support deeper understanding as it may facilitate analysis, logical sequencing, reflection, reasoning, evaluation and communication. Although the in-depth study involved one teacher and three artefacts from her students, which is a very small sample to be conclusive, it identified the numerous advantages that procedural flowcharts bring to mathematics learning and teaching, particularly in terms of supporting the development of problem-solving skills. The study calls for further investigation on how procedural flowcharts can support students’ problem solving.

Ahmad, A., Tarmizi, R. A., & Nawawi, M. (2010). Visual representations in mathematical word problem-solving among form four students in malacca. Procedia - Social and Behavioral Sciences, 8 , 356–361. https://doi.org/10.1016/j.sbspro.2010.12.050

Article   Google Scholar  

Anderson, J. (2014). Forging new opportunities for problem solving in Australian mathematics classrooms through the first national mathematics curriculum. In Y. Li & G. Lappan (Eds.), Mathematics curriculum in school education (pp. 209–230). Springer.

Chapter   Google Scholar  

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52 (3), 215–241. https://doi.org/10.1023/A:1024312321077

Artigue, M., & Blomhøj, M. (2013). Conceptualizing Inquiry-Based Education in Mathematics. ZDM, 45 (6), 797–810. https://doi.org/10.1007/s11858-013-0506-6

Artigue, M., Bosch, M., Doorman, M., Juhász, P., Kvasz, L., & Maass, K. (2020). Inquiry based mathematics education and the development of learning trajectories. Teaching Mathematics and Computer Science, 18 (3), 63–89. https://doi.org/10.5485/TMCS.2020.0505

Australia Curriculum and Reporting Authority. (2014). Mathematics proficiencies (Version 8.4) . https://www.australiancurriculum.edu.au/resources/mathematics-proficiencies/portfolios/problem-solving/

Azungah, T. (2018). Qualitative research: deductive and inductive approaches to data analysis. Qualitative Research Journal, 18 (4), 383–400. https://doi.org/10.1108/QRJ-D-18-00035

Berger, M. (1998). Graphic calculators: An Interpretative framework. For the Learning of Mathematics, 18 (2), 13–20.

Google Scholar  

Blum, W., & Leiß, D. (2007). Deal with modelling problems. Mathematical Modelling: Education, Engineering and Economics, 12 , 222. https://doi.org/10.1533/9780857099419.5.221

Bos, R., & van den Bogaart, T. (2022). Heuristic trees as a digital tool to foster compression and decompression in problem-solving. Digital Experiences in Mathematics Education, 8 (2), 157–182. https://doi.org/10.1007/s40751-022-00101-6

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3 (2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA Handbook of Research Methods in Psychology, Research Designs (Vol. 2, pp. 57–71). American Psychological Association.

Braun, V., & Clarke, V. (2021). One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in Psychology, 18 (3), 328–352. https://doi.org/10.1080/14780887.2020.1769238

Bree, R. T., Dunne, K., Brereton, B., Gallagher, G., & Dallat, J. (2014). Engaging learning and addressing over-assessment in the Science laboratory: Solving a pervasive problem. The All-Ireland Journal of Teaching and Learning in Higher Education, 6 (3), 206.1–206.36. http://ojs.aishe.org/index.php/aishe-j/article/viewFile/206/290

Burns, N., & Grove, S. (2009). The practice of nursing research: Appraisal, synthesis and generation of evidence (6th ed.). St. Louis: Saunders Elsevier. https://doi.org/10.7748/ns2013.04.27.31.30.b1488

Book   Google Scholar  

Byrne, D. (2022). A worked example of Braun and Clarke’s approach to reflexive thematic analysis. Quality & Quantity, 56 (3), 1391–1412. https://doi.org/10.1007/s11135-021-01182-y

Cai, J. (2010). Helping elementary school students become successful mathematical problem solvers. In D. Lambdin (Ed.), Teaching and learning mathematics: Translating research to the elementary classroom (pp. 9–14). Reston, VA: National Council of Teachers of Mathematics.

Cantatore, F., & Stevens, I. (2016). Making connections : Incorporating visual learning in law subjects through mind mapping and flowcharts. Canterbury Law Review, 22 (1), 153–170. https://doi.org/10.3316/agis_archive.20173661

Chinofunga, M. D., Chigeza, P., & Taylor, S. (2022). Procedural flowcharts can enhance senior secondary mathematics. In N. Fitzallen, C. Murphy, & V. Hatisaru (Eds.), Mathematical confluences and journeys (Proceedings of the 44th Annual Conference of the Mathematics Education Research Group of Australasia, July 3-7) (pp. 130–137). Launceston: MERGA. https://files.eric.ed.gov/fulltext/ED623874.pdf

Colburn, A. (2000). An inquiry primer. Science Scope, 23 (6), 42–44. http://www.cyberbee.com/inquiryprimer.pdf

Cole, F. L. (1988). Content analysis: Process and application. Clinical Nurse Specialist, 2 (1), 53–57. https://doi.org/10.1097/00002800-198800210-00025

Article   CAS   PubMed   Google Scholar  

Csíkos, C., Szitányi, J., & Kelemen, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: A design experiment with third-grade Hungarian students. Educational Studies in Mathematics, 81 , 47–65. https://doi.org/10.1007/s10649-011-9360-z

Davidowitz, B., & Rollnick, M. (2001). Effectiveness of flow diagrams as a strategy for learning in laboratories. Australian Journal of Education in Chemistry, (57), 18–24. https://search.informit.org/doi/10.3316/aeipt.129151

De Massis, A., & Kotlar, J. (2014). The case study method in family business research: Guidelines for qualitative scholarship. Journal of Family Business Strategy, 5 (1), 15–29. https://doi.org/10.1016/j.jfbs.2014.01.007

Dorier, J.-L., & Maass, K. (2020). Inquiry-based mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 384–388). Springer. https://doi.org/10.1007/978-3-030-15789-0_176

Doyle, K. M. (2005). Mathematical problem solving: A need for literacy. In F. Bryer, B. Bartlett, & D. Roebuck (Eds.), Proceedings Stimulating the “Action” as participants in participatory research 2 (pp. 39–45). Australia: Surfers Paradise.

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62 (1), 107–115. https://doi.org/10.1111/j.1365-2648.2007.04569.x

Article   PubMed   Google Scholar  

Elo, S., Kääriäinen, M., Kanste, O., Pölkki, T., Utriainen, K., & Kyngäs, H. (2014). Qualitative content analysis: A focus on trustworthiness. SAGE Open, 4 (1), 215824401452263. https://doi.org/10.1177/2158244014522633

English, L., & Gainsburg, J. (2016). Problem solving in a 21st-century mathematics curriculum. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 313–335). New York, NY: Routledge.

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM – Mathematics Education, 38 (2), 143–162. https://doi.org/10.1007/BF02655886

Geiger, V., Galbraith, P., Niss, M., & Delzoppo, C. (2021). Developing a task design and implementation framework for fostering mathematical modelling competencies. Educational Studies in Mathematics, 109 (2), 313–336. https://doi.org/10.1007/s10649-021-10039-y

Gencer, S. (2023). Development and use of flowchart for preservice chemistry teachers’ problem solving on the first law of thermodynamics. Journal of Chemical Education, 100 (9), 3393–3401. https://doi.org/10.1021/acs.jchemed.3c00224

Article   CAS   Google Scholar  

Grosskinsky, D. K., Jørgensen, K., & Hammer úr Skúoy, K. (2019). A flowchart as a tool to support student learning in a laboratory exercise. Dansk Universitetspædagogisk Tidsskrift, 14 (26), 23–35. https://doi.org/10.7146/dut.v14i26.104402

Guion, L. A., Diehl, D. C., & McDonald, D. (2011). Triangulation: Establishing the validity of qualitative studies. EDIS, (8), 3–3. https://doi.org/10.32473/edis-fy394-2011

Guk, I., & Kellogg, D. (2007). The ZPD and whole class teaching: Teacher-led and student-led interactional mediation of tasks. Language Teaching Research, 11 (3), 281–299. https://doi.org/10.1177/1362168807077561

Guthrie, J., Petty, R., Yongvanich, K., & Ricceri, F. (2004). Using content analysis as a research method to inquire into intellectual capital reporting. Journal of Intellectual Capital, 5 (2), 282–293. https://doi.org/10.1108/14691930410533704

Hacker, D. J., Dunlosky, J., & Graesser, A. C. (Eds.). (1998). Metacognition in educational theory and practice (1st ed.). Routledge. https://doi.org/10.4324/9781410602350

Hadamard, J. (1945). The psychology of invention in the mathematical field . Princeton, NJ: Princeton University Press.

Hankeln, C. (2020). Mathematical modeling in Germany and France: A comparison of students’ modeling processes. Educational Studies in Mathematics, 103 (2), 209–229. https://doi.org/10.1007/s10649-019-09931-5

Hooshyar, D., Ahmad, R. B., Yousefi, M., Fathi, M., Horng, S.-J., & Lim, H. (2016). Applying an online game-based formative assessment in a flowchart-based intelligent tutoring system for improving problem-solving skills. Computers and Education, 94 , 18–36. https://doi.org/10.1016/j.compedu.2015.10.013

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277–1288. https://doi.org/10.1177/1049732305276687

Huang, X., Huang, R., & Trouche, L. (2023). Teachers’ learning from addressing the challenges of online teaching in a time of pandemic: A case in Shanghai. Educational Studies in Mathematics, 112 (1), 103–121. https://doi.org/10.1007/s10649-022-10172-2

Hughes, J. R. A., & Goodwin, J. (2014). Editors’ introduction: Human documents and archival research . University of Leicester. Chapter. https://hdl.handle.net/2381/31547

Jitendra, A. K., Dupuis, D. N., Rodriguez, M. C., Zaslofsky, A. F., Slater, S., Cozine-Corroy, K., & Church, C. (2013). A randomized controlled trial of the impact of schema-based instruction on mathematical outcomes for third-grade students with mathematics difficulties. The Elementary School Journal, 114 (2), 252–276. https://doi.org/10.1086/673199

Jonassen, D. H. (2012). Designing for decision making. Educational Technology Research and Development, 60 (2), 341–359. https://doi.org/10.1007/s11423-011-9230-5

Kaitera, S., & Harmoinen, S. (2022). Developing mathematical problem-solving skills in primary school by using visual representations on heuristics. LUMAT: International Journal on Math, Science and Technology Education, 10 (2), 111–146. https://doi.org/10.31129/LUMAT.10.2.1696

Karp, A., & Wasserman, N. (2015). Mathematics in middle and secondary school: A problem-solving approach . Charlotte, North Carolina: Information Age Publishing Inc.

Kim, K., Sharma, P., Land, S. M., & Furlong, K. P. (2012). Effects of active learning on enhancing student critical thinking in an undergraduate general science course. Innovative Higher Education, 38 (3), 223–235. https://doi.org/10.1007/s10755-012-9236-x

King, A. (1995). Designing the instructional process to enhance critical thinking across the curriculum: Inquiring minds really do want to know: Using questioning to teach critical thinking. Teaching of Psychology, 22 (1), 13–17. https://doi.org/10.1207/s15328023top2201_5

Article   MathSciNet   Google Scholar  

King, N. (2004). Using templates in the thematic analysis of text. In C. Cassell & G. Symon (Eds.), Essential guide to qualitative methods in organizational research (pp. 257–270). London, UK: Sage. https://doi.org/10.4135/9781446280119

Kingsdorf, S., & Krawec, J. (2014). Error analysis of mathematical word problem solving across students with and without learning disabilities. Learning Disabilities Research & Practice, 29 (2), 66–74. https://doi.org/10.1111/ldrp.12029

Kirova, A., & Jamison, N. M. (2018). Peer scaffolding techniques and approaches in preschool children’s multiliteracy practices with iPads. Journal of Early Childhood Research, 16 (3), 245–257. https://doi.org/10.1177/1476718X18775762

Koellner, K., Jacobs, J., & Borko, H. (2011). Mathematics professional development: Critical features for developing leadership skills and building teachers’ capacity. Mathematics Teacher Education & Development, 13 (1), 115–136. Retrieved from https://files.eric.ed.gov/fulltext/EJ960952.pdf

Krawec, J. L. (2014). Problem representation and mathematical problem solving of students of varying math ability. Journal of Learning Disabilities, 47 , 103–115. https://doi.org/10.1177/0022219412436976

Krohn, G. S. (1983). Flowcharts used for procedural instructions. Human Factors, 25 (5), 573–581. https://doi.org/10.1177/001872088302500511

Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren . Chicago: University of Chicago Press.

Kules, B. (2016). Computational thinking is critical thinking: Connecting to university discourse, goals, and learning outcomes. Proceedings of the Association for Information Science and Technology, 53 (1), 1–6. https://doi.org/10.1002/pra2.2016.14505301092

Kyngäs, H., Mikkonen, K., & Kääriäinen, M. (2020). The application of content analysis in nursing science research . Cham: Springer. https://doi.org/10.1007/978-3-030-30199-6

Laughlin, P. R., Hatch, E. C., Silver, J. S., & Boh, L. (2006). Groups perform better than the best individuals on letters-to-numbers problems: Effects of group size. Journal of Personality and Social Psychology, 90 (4), 644–651. https://doi.org/10.1037/0022-3514.90.4.644

Lederman, R. P. (1991). Content analysis: Steps to a more precise coding procedure. MCN, The American Journal of Maternal Child Nursing, 16 (5), 275–275. https://doi.org/10.1097/00005721-199109000-00012

Ledin, P., & Machin, D. (2020). The misleading nature of flow charts and diagrams in organizational communication: The case of performance management of preschools in Sweden. Semiotica, 2020 (236), 405–425. https://doi.org/10.1515/sem-2020-0032

Lester, F. (2013). Thoughts about research on mathematical problem-solving instruction. The Mathematics Enthusiast, 10 (1–2), 245–278.

Lester, F. K., & Cai, J. (2016). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems: Advances and new perspectives (pp. 117–135). Springer International Publishing. https://doi.org/10.1007/978-3-319-28023-3_8

Lohse, G., Biolsi, K., Walker, N., & Rueter, H. (1994). A classification of visual representations. Communications of the ACM, 37 (12), 36–49. https://doi.org/10.1145/198366.198376

Makar, K. (2012). The pedagogy of mathematical inquiry. In R. Gillies (Ed.), Pedagogy: New developments in the learning sciences (pp. 371–397). Hauppauge, N.Y.: Nova Science Publishers.

Mason, J. (2016). When is a problem…? “When” is actually the problem! In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems. Advances and new perspectives (pp. 263–287). Switzerland: Springer. https://doi.org/10.1007/978-3-319-28023-3_16

Matty, A. N. (2016). A study on how inquiry based instruction impacts student achievement in mathematics at the high school level . ProQuest Dissertations Publishing. https://www.proquest.com/openview/da895b80797c90f9382f0c9a948f7f68/1?pq-origsite=gscholar&cbl=18750

McCormick, N. J., Clark, L. M., & Raines, J. M. (2015). Engaging students in critical thinking and problem-solving: A brief review of the literature. Journal of Studies in Education, 5 (4), 100–113. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.960.810&rep=rep1&type=pdf

McGowan, M. M., & Boscia, M. W. (2016). Opening more than just a bag: Unlocking the flowchart as an effective problem-solving tool. The Journal of Health Administration Education, 33 (1), 211–219.

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4th ed.). Newark: Wiley.

Moon, J. (2008). Critical thinking: An exploration of theory and practice . Routledge. https://doi.org/10.4324/9780203944882

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics . Reston, VA: National Council of Teachers of Mathematics.

Nieuwoudt, S. (2015). Developing a model for problem-solving in a Grade 4 mathematics classroom. Pythagoras, 36 (2), 1–7. https://doi.org/10.4102/pythagoras.v36i2.275

Norton, S. J., McRobbie, C. J., & Ginns, I. S. (2007). Problem-solving in a middle school robotics design classroom. Research in Science Education, 37 (3), 261–277. https://doi.org/10.1007/s11165-006-9025-6

Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16 (1), 1609406917733847. https://doi.org/10.1177/1609406917733847

Ouyang, F., Chen, S., Yang, Y., & Chen, Y. (2022). Examining the effects of three group-level metacognitive scaffoldings on in-service teachers’ knowledge building. Journal of Educational Computing Research, 60 (2), 352–379. https://doi.org/10.1177/07356331211030847

Owens, K. D., & Clements, M. A. (1998). Representations in spatial problem-solving in the classroom. The Journal of Mathematical Behavior, 17 (2), 197–218. https://doi.org/10.1016/S0364-0213(99)80059-7

Ozuem, W., Willis, M., & Howell, K. (2022). Thematic analysis without paradox: Sensemaking and context. Qualitative Market Research, 25 (1), 143–157. https://doi.org/10.1108/QMR-07-2021-0092

Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40 (2), 118–127. https://doi.org/10.1207/s15430421tip4002_6

Parvaneh, H., & Duncan, G. J. (2021). The role of robotics in the development of creativity, critical thinking and algorithmic thinking. Australian Primary Mathematics Classroom, 26 (3), 9–13. https://doi.org/10.3316/informit.448545849534966

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage Publications.

Polya, G. (1945). How to solve it: A new aspect of mathematical method . Princeton, NJ: Princeton University Press.

Polya, G. (1957). How to solve it: A new aspect of mathematical method . Princeton: Princeton University Press.

Polya, G. (1971). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press.

Queensland Curriculum and Assessment Authority (QCAA). (2018). Mathematical methods. general senior syllabus . Brisbane: Queensland Curriculum and Assessment Authority. https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_maths_methods_19_syll.pdf

Raiyn, J. (2016). The role of visual learning in improving students’ high-order thinking skills. Journal of Education and Practice, 7 , 115–121. https://www.learntechlib.org/p/195092/

Reingewertz, Y. (2013). Teaching macroeconomics through flowcharts. International Review of Economics Education, 14 , 86–93. https://doi.org/10.1016/j.iree.2013.10.004

Reinholz, D. L. (2020). Five practices for supporting inquiry in analysis. Problems Resources and Issues in Mathematics Undergraduate Studies, 30 (1), 19–35. https://doi.org/10.1080/10511970.2018.1500955

Roam, D. (2009). The back of the napkin: Solving problems and selling ideas with pictures (1st ed.). Singapore: Marshall Cavendish International (Asia) Private Limited.

Rogoff, B., Malkin, C., & Gilbride, K. (1984). Interaction with babies as guidance in development. New Directions for Child and Adolescent Development, 1984 (23), 31–44. https://doi.org/10.1002/cd.23219842305

Roth, W. M., & McGinn, M. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68 (1), 35–59.

Sakshaug, L. E., & Wohlhuter, K. A. (2010). Journey toward teaching mathematics through problem-solving. School Science and Mathematics, 110 (8), 397–409. https://doi.org/10.1111/j.1949-8594.2010.00051.x

Santoso, B., & Syarifuddin, H. (2020). Validity of mathematic learning teaching administration on realistic mathematics education based approach to improve problem-solving. Journal of Physics. Conference Series, 1554 (1), 12001. https://doi.org/10.1088/1742-6596/1554/1/012001

Schoenfeld, A. H. (1980). Teaching problem-solving skills. The American Mathematical Monthly, 87 (10), 794. https://doi.org/10.2307/2320787

Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum . The Mathematical Association of America.

Schoenfeld, A. H. (2013). Reflections on problem-solving theory and practice. The Mathematics Enthusiast, 10 (1/2), 9.

Schoenfeld, A. H. (2016). Learning to think mathematically: Problem-solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196 (2), 1–38. https://doi.org/10.1177/002205741619600202

Schoenfeld, A. H., Floden, R. E., & The algebra teaching study and mathematics assessment project. (2014). An introduction to the TRU Math document suite . Berkeley, CA & E. Lansing, MI: Graduate School of Education, University of California, Berkeley & College of Education, Michigan State University. Retrieved from: http://ats.berkeley.edu/tools.html

Schreier, M. (2012). Qualitative content analysis in practice . London: SAGE.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104 , 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Stone, C. A. (1998). Should we salvage the scaffolding metaphor? Journal of Learning Disabilities, 31 (4), 409–413. https://doi.org/10.1177/002221949803100411

Stylianou, D. A. (2010). Teachers’ conceptions of representation in middle school mathematics. Journal of Mathematics Teacher Education, 13 (4), 325–343. https://doi.org/10.1007/s10857-010-9143-y

Sweller, J., Van Merrienboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31 (2), 261–292. https://doi.org/10.1007/s10648-019-09465-5

Sztajn, P., Borko, H., & Smith, T. (2017). Research on mathematics professional development. In J. Cai (Ed.), Compendium for research in mathematics education (Chapter 29, pp. 213–243). Reston, VA: National Council of Teachers of Mathematics.

Tobin, G. A., & Begley, C. M. (2004). Methodological rigor within a qualitative framework. Journal of Advanced Nursing, 48 , 388–396. https://doi.org/10.1111/j.1365-2648.2004.03207.x

Torraco, R. J. (2005). Writing integrative literature reviews: Guidelines and examples. Human Resource Development Review, 4 (3), 356–367. https://doi.org/10.1177/1534484305278283

Trouche, L., Gueudet, G., & Pepin, B. (2018). Documentational approach to didactics. In S. Lerman (Ed.), Encyclopedia of mathematics education. Cham: Springer. https://doi.org/10.1007/978-3-319-77487-9_100011-1

Trouche, L., Rocha, K., Gueudet, G., & Pepin, B. (2020). Transition to digital resources as a critical process in teachers’ trajectories: The case of Anna’s documentation work. ZDM Mathematics Education, 52 (7), 1243–1257. https://doi.org/10.1007/s11858-020-01164-8

Vale, I., & Barbosa, A. (2018). Mathematical problems: The advantages of visual strategies. Journal of the European Teacher Education Network, 13 , 23–33.

Vale, I., Pimentel, T., & Barbosa, A. (2018). The power of seeing in problem solving and creativity: An issue under discussion. In S. Carreira, N. Amado, & K. Jones (Eds.), Broadening the scope of research on mathematical problem-solving: A focus on technology, creativity and affect (pp. 243–272). Switzerland: Springer.

van Garderen, D., Scheuermann, A., Sadler, K., Hopkins, S., & Hirt, S. M. (2021). Preparing pre-service teachers to use visual representations as strategy to solve mathematics problems: What did they learn? Teacher Education and Special Education, 44 (4), 319–339. https://doi.org/10.1177/0888406421996070

Voskoglou, M. (2021). Problem solving and mathematical modelling. American Journal of Educational Research, 9 (2), 85–90. https://doi.org/10.12691/education-9-2-6

Vygotsky, L. S. (1978). Mind in society . Cambridge, MA: Harvard University Press.

Zahner, D., & Corter, J. E. (2010). The process of probability problem solving: Use of external visual representations. Mathematical Thinking and Learning, 12 (2), 177–204. https://doi.org/10.1080/10986061003654240

Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21 (2), 179–217. https://doi.org/10.1207/s15516709cog2102_3

Download references

Acknowledgements

We would like to acknowledge and thank the teachers and students involved in the research.

Open Access funding enabled and organized by CAUL and its Member Institutions The study was financially supported by James Cook University Higher degree by research grant.

Author information

Authors and affiliations.

College of Arts, Society and Education, James Cook University, Cairns, Australia

Musarurwa David Chinofunga, Philemon Chigeza & Subhashni Taylor

You can also search for this author in PubMed   Google Scholar

Contributions

David: developed original idea, completed literature review, data analysis and authored the first draft of the article (80%). Philemon and Subhashni contributed to the data analysis, coherence of ideas and editing of the article (10% each).

Corresponding author

Correspondence to Musarurwa David Chinofunga .

Ethics declarations

Ethics approval.

This research was approved by the Human Research Ethics Committee, James Cook University (Approval Number H8201).

Informed consent

Informed consent was sought from all participants in accordance with the above ethics approval conditions. Before seeking consent from participants, permission was first obtained from the Queensland Department of Education and school principals of participating schools. The information sheets and consent forms were sent to participating mathematics teachers. An information sheet and consent form for students to share their artifacts was send through their teacher and consent was obtained directly from them as young adults (17–18 years). Consent forms and the data collected has been deidentified to protect participants and stored in the university repository.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A research report which is part of a PhD study by the first author who is an experienced high school mathematics teacher in Queensland, Australia. The second and third authors are primary and secondary advisors respectively. Correspondence concerning this article should be addressed to David Chinofunga, College of Arts, Society and Education, Nguma-bada Campus, Smithfield, Building A4, Cairns, PO Box 6811 Cairns QLD 4870, Australia.

Appendix 1 An approach to problem solving and mathematical modelling

figure a

Appendix 2 Phases three and four thematic analysis themes

figure b

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Chinofunga, M.D., Chigeza, P. & Taylor, S. How can procedural flowcharts support the development of mathematics problem-solving skills?. Math Ed Res J (2024). https://doi.org/10.1007/s13394-024-00483-3

Download citation

Received : 09 February 2023

Revised : 28 November 2023

Accepted : 06 January 2024

Published : 22 February 2024

DOI : https://doi.org/10.1007/s13394-024-00483-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Problem solving
  • Procedural flowcharts
  • Problem-solving stages
  • Solution planning
  • Visual representation
  • Find a journal
  • Publish with us
  • Track your research

Verywell Mind

Descriptive Research in Psychology

Sometimes you need to dig deeper than the pure statistics

Descriptive research is one of the key tools needed in any psychology researcher’s toolbox in order to create and lead a project that is both equitable and effective. Because psychology, as a field, loves definitions, let’s start with one. The University of Minnesota’s Introduction to Psychology defines this type of research as one that is “...designed to provide a snapshot of the current state of affairs.”

That's pretty broad, so what does that mean in practice? Dr. Heather Derry-Vick (PhD) , an assistant professor in psychiatry at Hackensack Meridian School of Medicine, helps us put it into perspective.

"Descriptive research really focuses on defining, understanding, and measuring a phenomenon or an experience," she says. "Not trying to change a person's experience or outcome, or even really looking at the mechanisms for why that might be happening, but more so describing an experience or a process as it unfolds naturally.”

Types of Descriptive Research and the Methods Used

Within the descriptive research methodology there are multiple types, including the following.

Descriptive Survey Research

This involves going beyond a typical tool like a LIkert Scale —where you typically place your response to a prompt on a one to five scale. We already know that scales like this can be ineffective, particularly when studying pain, for example.

When that's the case, using a descriptive methodology can help dig deeper into how a person is thinking, feeling, and acting rather than simply quantifying it in a way that might be unclear or confusing.

Descriptive Observational Research

Think of observational research like an ethically-focused version of people-watching. One example would be watching the patterns of children on a playground—perhaps when looking at a concept like risky play or seeking to observe social behaviors between children of different ages.

Descriptive Case Study Research

A descriptive approach to a case study is akin to a biography of a person, honing in on the experiences of a small group to extrapolate to larger themes. We most commonly see descriptive case studies when those in the psychology field are using past clients as an example to illustrate a point.

Correlational Descriptive Research

While descriptive research is often about the here and now, this form of the methodology allows researchers to make connections between groups of people. As an example from her research, Derry-Vick says she uses this method to identify how gender might play a role in cancer scan anxiety, aka scanxiety.

Dr. Derry-Vick's research uses surveys and interviews to get a sense of how cancer patients are feeling and what they are experiencing both in the course of their treatment and in the lead-up to their next scan, which can be a significant source of stress.

David Marlon, PsyD, MBA , who works as a clinician and as CEO at Vegas Stronger, and whose research focused on leadership styles at community-based clinics, says that using descriptive research allowed him to get beyond the numbers.

In his case, that includes data points like how many unhoused people found stable housing over a certain period or how many people became drug-free—and identify the reasons for those changes.

For the portion of his thesis that was focused on descriptive research, Marlon used semi-structured interviews to look at the how and the why of transformational leadership and its impact on clinics’ clients and staff.

Advantages & Limitations of Descriptive Research

So, if the advantages of using descriptive research include that it centers the research participants, gives us a clear picture of what is happening to a person in a particular moment,  and gives us very nuanced insights into how a particular situation is being perceived by the very person affected, are there drawbacks?

Yes, there are. Dr. Derry-Vick says that it’s important to keep in mind that just because descriptive research tells us something is happening doesn’t mean it necessarily leads us to the resolution of a given problem.

Another limitation she identifies is that it also can’t tell you, on its own, whether a particular treatment pathway is having the desired effect.

“Descriptive research in and of itself can't really tell you whether a specific approach is going to be helpful until you take in a different approach to actually test it.”

Marlon, who believes in a multi-disciplinary approach, says that his subfield—addictions—is one where descriptive research had its limits, but helps readers go beyond preconceived notions of what addictions treatment looks and feels like when it is effective.

“If we talked to and interviewed and got descriptive information from the clinicians and the clients, a much more precise picture would be painted, showing the need for a client's specific multidisciplinary approach augmented with a variety of modalities," he says. "If you tried to look at my discipline in a pure quantitative approach , it wouldn't begin to tell the real story.”

Best Practices for Conducting Descriptive Research

Because you’re controlling far fewer variables than other forms of research, it’s important to identify whether those you are describing, your study participants, should be informed that they are part of a study.

For example, if you’re observing and describing who is buying what in a grocery store to identify patterns, then you might not need to identify yourself.

However, if you’re asking people about their fear of certain treatment, or how their marginalized identities impact their mental health in a particular way, there is far more of a pressure to think deeply about how you, as the researcher, are connected to the people you are researching.

Many descriptive research projects use interviews as a form of research gathering and, as a result, descriptive research that is focused on this type of data gathering also has ethical and practical concerns attached. Thankfully, there are plenty of guides from established researchers about how to best conduct these interviews and/or formulate surveys .

While descriptive research has its limits, it is commonly used by researchers to get a clear vantage point on what is happening in a given situation.

Tools like surveys, interviews, and observation are often employed to dive deeper into a given issue and really highlight the human element in psychological research. At its core, descriptive research is rooted in a collaborative style that allows deeper insights when used effectively.

Read the original article on Verywell Mind .

FG Trade / E+/ Getty

  • Open access
  • Published: 22 February 2024

Lesson learned from assessing teachers’ and students’ perspectives regarding the quality of e-learning in medical education during the pandemic: a mixed-methods study

  • Nahid Zarifsanaiey   ORCID: orcid.org/0000-0002-1297-8271 1 ,
  • Majid Reza Farrokhi   ORCID: orcid.org/0000-0003-1252-3215 2 ,
  • Zahra karimian   ORCID: orcid.org/0000-0002-5631-6448 1 ,
  • Sara hoseini 3 ,
  • farshid chahartangi   ORCID: orcid.org/0000-0003-1956-4802 1 &
  • Hadi Raeisi Shahraki 4  

BMC Medical Education volume  24 , Article number:  171 ( 2024 ) Cite this article

Metrics details

The evaluation of e-learning systems ensures the provision of quality training. The goal was to identify the perspectives of teachers and students on e-learning in medical education during the COVID-19 pandemic at Shiraz University of Medical Sciences (SUMS), Iran.

This study utilized a convergent mixed methods research design with a two-phase approach to collect and analyze data between June and August 2022. In the first stage, a cross-sectional descriptive study was conducted to evaluate the quality of e-learning systems from the perspective of 400 students. In the second stage, semi-structured interviews were conducted with 10 virtual education professors and 10 student representatives to identify the strengths, weaknesses, opportunities, and threats of virtual education. A validated questionnaire was administered to assess the quality of the e-learning system, and data were analyzed using SPSS-21. Qualitative data were subjected to content analysis.

Our findings revealed that the student support system, the course structure, and the infrastructure and technology subscales’ mean scores were significantly higher than the average level ( P  < 0.001). However, the professors’ methods of teaching and learning strategies were unsatisfactory. The results of the present study showed that the evaluation mean score was significantly higher among, younger, female, and undergraduate students. Virtual education has strengths and weaknesses, and innovative approaches are needed to enhance student engagement. The lack of appropriate infrastructure and virtual teaching tools for teachers and students is a significant challenge that needs to be addressed. Blended learning is effective in medical education, and the shift from teacher-centered to learner-centered teaching approaches is an opportunity to explore innovative teaching approaches.

From the perspective of students, the quality of eLearning systems at the universities was moderate. Virtual education offers both benefits and drawbacks, and there is a requirement for innovative solutions to enhance student engagement and lessen boredom.

Peer Review reports

In the era of e-learning with COVID-19 impacting the latter months of 2019, the education system had to adapt to new ways of teaching and learning [ 1 ].

The medical education sector has experienced a significant shift towards e-learning as the pandemic forced students to learn remotely. Consequently, medical universities rapidly transitioned to e-learning to ensure continuity of education [ 2 ]. This complex process involved both teachers and students in the implementation of e-learning [ 3 ]. E-learning, which involves the use of digital technologies and the internet to deliver educational content, has revolutionized teaching and interaction techniques, enabling education to continue regardless of time constraints. It encompasses accessing materials, participating in interactive lessons, and collaborating with instructors and peers through computers, mobile devices, and online platforms. E-learning offers flexible learning options in terms of time, location, and pace, enabling individuals to access resources and engage in activities at their convenience. Universities and educational institutions have been able to provide services to students more flexibly, ensuring connectivity and the ability to continue studies even during crisis situations [ 4 ].

The success of any educational system depends on the participation of its students and teachers [ 5 ]. Therefore, their opinions are considered to be one of the most crucial factors in the success of e-learning systems [ 6 ]. Numerous studies have been administered in an effort to gauge teachers and students’ perspectives toward e-learning. For instance, a study conducted by Dyrek et al. in Poland showed that students of Medical Universities were highly accepting of lectures and seminars conducted through e-learning, but not laboratory and clinical classes [ 7 ]. On the other hand, Rathod et al. highlighted the flexibility and convenience provided by e-learning systems, which allow students to access educational content at their own pace and time [ 8 ]. Moreover, e-learning could be cost-effective in the long run and address the problem of travel distance and time [ 9 ]. In this regard, a study by Li et al. found that time, place, learning speed, and flexibility are critical factors in students’ decisions to use the e-learning system [ 10 ]. In addition, e-learning has ensured the continuity of education during the COVID-19 pandemic, allowing students to continue their studies despite the challenges posed by the pandemic [ 11 ].

Despite the numerous benefits of e-learning, designing a functional e-learning system remains a significant hurdle. The major hurdles that undermine student and teacher satisfaction include a lack of suitable infrastructure, inadequate content development, insufficient teacher-student interaction, ineffective online teaching methods, as well as restricted access to technology [ 12 , 13 , 14 ].. Furthermore, In some studies about the challenges of e-learning during the COVID-19 pandemic specially in low- and middle-income countries showed that students and faculty may find it difficult to use e-learning systems effectively due to resource constraints, technological barriers, and cultural differences [ 15 ].

In response to the COVID-19 pandemic and its impact on the teaching-learning process, Shiraz University of Medical Sciences (SUMS) conducted a sudden switch to online learning, disrupting traditional practices of instruction and assessment. While the university had made efforts to introduce e-learning workshops over the last decade, many teachers and students were not well-versed with online teaching before the pandemic. This move also raised questions about the quality of teaching and learning. To address the issue, the university conducted additional workshops to train students and teachers to work with the university’s Learning Management System (LMS), virtual classes, discussion forums, and assigned names and passwords to all students and teachers to work with the platforms. Therefore, they used LMS, virtual classes, discussion forums, and other open-access social media, such as Zoom and Skype, to design their courses synchronously and asynchronously. In addition, the university provided a technical support system that was available seven days a week for teachers and students to address technical issues during online learning sessions. Due to its significant impact on the education system, COVID-19 has accelerated the implementation of e-learning worldwide, making it crucial to evaluate its effectiveness [ 16 ]. To ensure the effectiveness of e-learning in medical education, it is crucial to evaluate the perceptions of students and teachers. Considering that the evaluation of students’ and teachers’ perceptions of the educational system plays a significant role in enhancing educational quality and that there is a perceived information gap in e-learning in medical universities [ 16 – 17 ]. As medical education is undergoing a transformation worldwide, it is crucial for universities and planners to critically reflect on the previous situation and make appropriate decisions regarding the future of medical education because e-learning has specific benefits and challenges in each university and it is very important to analyses. Most related research focuses on one of the crucial components of the education system, such as teachers and students, and examines their perspectives [ 14 – 15 ]. In order to gain a more comprehensive understanding of the views of both instructors and students, we conducted a mixed-method study that combined qualitative and quantitative research.” Therefore, this study aimed to evaluate e-learning quality from both the perspectives of teachers and students during the COVID-19 pandemic. Lessons learned and feedback obtained from the evaluation process can greatly impact the design and implementation of future e-learning initiatives, ensuring a high-quality learning experience for students.

Study design

This study employed a convergent mixed methods research design with a two-phase approach to collect and analyze data. The first stage involved a cross-sectional descriptive study to evaluate the quality of e-learning systems from the perspective of students affiliated with SUMS.

Subsequently, in the second phase, semi-structured interviews were conducted with two groups: ten responsible virtual education professors and ten student representatives. The purpose of these interviews was to gain deeper insights into the experiences and perspectives of both teachers and students regarding e-learning in the medical education field. By utilizing semi-structured interviews, the researchers aimed to identify specific strengths, weaknesses, opportunities, and threats associated with virtual education.

By combining the findings from both the cross-sectional study and the interviews, the researchers aimed to generate valuable insights into the overall e-learning quality from both the perspectives of teachers and students during the COVID-19 pandemic.

Participants

Eligibility criteria for participants:

In the quantitative stage, the study included undergraduates and graduate medical students at SUM. These students had completed at least two semesters of virtual classes using synchronous and asynchronous methods. The virtual classes were conducted through the university’s Learning Management System (LMS), along with discussion forums and other open-access platforms like social media, Zoom, and Skype. These students met the inclusion criteria for the study. It is worth noting that all the universities in the region use the same learning management system (LMS) for educational activities. They completed informed consent forms and were willing to participate. Those who did not complete more than 20% of the questionnaires were excluded from the study. In total, about 10,000 people were eligible to participate in the study.

In the qualitative stage, ten representatives of students, and 10 professors who have been responsible for developing virtual education in colleges for at least 6 months were selected. Participants who did not complete the interview process were excluded from the study. Both individuals were selected based on the expectation that they would possess the ability to provide thorough and detailed information pertaining to the research goal.

The quantitate stage: To determine the sample size, Cochran’s formula and Morgan’s table were used. Taking into account a 95% confidence interval and a 20% attrition rate, 400 participants were considered.

The research samples were selected by convenience sampling method during June to august 2022 [ 18 ]. Sampling continued until the number of completed questionnaires reached 400.

The qualitative stage: At this stage, representatives of students and experienced professors in the field of virtual education were purposefully selected until data saturation was achieved.

Data collection tools

The data collection tool consisted of two sections, the first of which dealt with demographic details (age, gender, GPA (grade point average), grade, year of study, and faculty). The second section allocated with students’ opinions on the quality of e-learning systems, measured on a Likert scale from 1 (strongly disagree) to 5 (strongly agree) This section has 27 items in 5 domains: teaching-learning strategies (design, evaluation, and feedback) (9 items), course structure (consistency of the curriculum, compliance with laws and ethical standards, easy access to the education space) (9 items), infrastructure and technology (necessary software, network speed, the ability to set up audio and video, the quality of multimedia files, and the security of students’ information) (10 items). Test- value is this study is 2.50.

The Questionnaire was developed by Shahhoseini et al. in 2015 as a standardized tool to measure the quality of e-Learning systems. The questionnaire has a high content validity index (CVI) of 0.94, with a content validity ratio (CVR) of 0.87. The questionnaire’s reliability has been found to be acceptable, with a reliability of 94.5% [ 19 ]. In addition, the Pearson correlation test in this study showed that there is a positive and significant correlation between the total score of the questionnaire and each sub-questionnaire ( P  < 0.001) (Table  1 ). The high Pearson correlation coefficients between the subscales of the questionnaire (ranging from 0.68 to 0.92) suggest a strong positive relationship between the dimensions, indicating good internal consistency and reliability of the questionnaire. This is supported by the concept that reliability ensures consistency in the results, and the high correlations reflect the consistent relationships between the subscales over time and across similar conditions [ 20 ].

Initially, eligible students were provided online questionnaires 24 h after completing the informed consent form. Those who did not return questionnaires were contacted and urged to do so. Noticeably, only one follow-up effort was conducted per participant.

Qualitative data were collected through online interviews conducted on the WhatsApp social network. The aim of these interviews was to identify the strengths, weaknesses, opportunities, and threats associated with virtual education through SWOT analysis. SWOT analysis is a commonly used tool to identify the strengths, weaknesses, opportunities, and threats in an educational environment. It helps to identify the factors that can affect the success of virtual education and can be used to develop strategies to address these factors [ 21 – 22 ].

To further improve the validity and reliability of the study, several steps were taken. During the interviews, the discussions were audio-recorded to capture the participants’ responses accurately. These recordings were later transcribed verbatim, ensuring that no crucial details were missed during the analysis. By using verbatim transcripts, the researchers aimed to maintain the integrity and accuracy of the data [ 23 ].

Then, member checking was employed. After transcribing the interview discussions verbatim, the transcripts were shared with the 20 participants who took part in the semi-structured interviews. This process involved seeking feedback from the participants to ensure the accuracy and credibility of the data. The participants were given the opportunity to review their respective transcripts and provide input regarding the accuracy of the transcriptions and the interpretation of their responses. This step allowed them to confirm whether their viewpoints were adequately represented and if any necessary revisions or clarifications were required. In addition, the validity of the interview content was also confirmed by 5 experts in e-learning and medical education. These external experts reviewed the interview transcripts and provided their professional insights and expertise to validate the accuracy of the data interpretation. Their expertise and feedback added credibility and rigor to the study. In addition, the authors’ team conducted multiple meetings at each stage, fostering dynamic discussions, facilitating comparative interpretations, and ultimately reaching a consensus on data analysis.

The interview questions were as follows:

What are the strengths of virtual education in medical sciences?

What are the weaknesses of virtual education in medical sciences?

What opportunities exist to improve virtual education?

What threats are there to virtual education in medical sciences?

Statistical methods

SPSS 21 was used to analyze the collected data. The data was then analyzed using descriptive statistics, as well as Pearson’s correlation coefficient, independent T-test and one way analysis of variance (ANOVA), to determine whether there was a relationship between the demographic data and opinions on the quality of e-learning systems.

The qualitative data were subjected to content analysis, with three authors manually analyzing the data. Through a meticulous process of coding and categorizing, themes emerged to encapsulate the essence of the data. The study also followed the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist to ensure transparency and rigor in the reporting of the study’s methods and results.

Data integration

The quantitative and qualitative data were integrated by comparing and contrasting the findings. The qualitative data were used to explain and build upon the initial quantitative results.

Ethical considerations

The study commenced following approval by the local ethics committee and coordination with the vice president of research at the universities. In the initial phone call, the researcher explained the objectives of the study, emailed the informed consent form to the participant, and obtained their signed informed consent. To ensure anonymity, no names were included on the surveys, and a research assistant decoded all completed questionnaires to prevent errors. To adhere to ethical standards, participation was voluntary and participants had the right to withdraw at any time.

The 400 recruited students were enrolled through convenience sampling. Most of the participants were male (56.8%), between 18 and 22 years (53.0%), bachelor’s degree (57.3%) with GPA 16 to 17.99 (52.5%). The mean and standard deviation of the evaluation score according to demographic variables can be seen in Table  2 .

There was a significant relationship between participants’ scores and age, gender, grade, year of study, and faculty (< 0.001). The female perspective mean score was significantly higher among male students. Furthermore, the mean score of the views decreased significantly with age. Also, undergraduate students compared to other courses and students of other universities had a better view of the state of the electronic learning system than students at Shiraz University of Medical Sciences. Nursing students with 3.04 ± 0.53 and dentistry students with 2.38 ± 0.65 respectively had the highest and lowest average score. Table  3 shows the mean score of the participants’ perspective subscales.

The findings revealed several important aspects of e-learning in the medical education context. Our findings revealed that the student support system, the course structure, and the infrastructure and technology subscales’ mean scores were significantly higher than the average level However, the teaching-learning strategies subscale mean score was lower than the average level, indicating that there is room for improvement in this aspect of the educational environment -learning strategies were unsatisfactory. In addition, the total mean score of students was significantly higher than the average level ( P  < 0.001).

According to the views of 20 experts and students in this field, the strengths, weaknesses, threats, and opportunities of virtual education were categorized as follows:

The student’s perspective

One of the strengths identified by students was the flexibility of e-learning. They appreciated the ability to learn at their own pace and schedule, which allowed them to balance their academic pursuits with other commitments. The accessibility of educational materials and guidelines was also highlighted as a strength, as students could access resources from anywhere, eliminating the need for physical presence in a classroom.

It has many strengths as a form of education. One of the most notable advantages of e-learning is convenience. As students, we can access our classes and materials from anywhere, at any time. This flexibility allows us to work around our other commitments, and makes it easier to balance our academic and personal lives. Participating student No.2. The most strength of e-learning is its ability to personalize the learning experience. Through quizzes and assessments, we can track our progress and identify areas where we need to improve. This can help us set goals and make progress towards them, which can be highly motivating. Additionally, the availability of online learning materials means that students have access to a wealth of information and resources, allowing us to learn and grow even beyond the classroom setting. Participating student No.4.

Based on the provided information, it is evident that the teaching approaches implemented in the e-learning environment were deemed unsuitable, resulting in online classes being perceived as tedious and uninteresting. This highlights a weakness in the execution of teaching methods within the virtual setting. The lack of student engagement was a prominent issue observed in the online classes. The strategies employed failed to effectively captivate students, leading to a noticeable absence of interest and a sense of boredom. The absence of face-to-face interactions with peers and instructors could deprive students of the social aspect of traditional classrooms. This reduced social interaction may impact their motivation, sense of belonging, and ability to form meaningful relationships with fellow students and teachers.

The repetitive use of similar instructional methods without variation further compounded the students’ perception of boredom. Additionally, the insufficient utilization of interactive tools, such as virtual simulations, multimedia presentations, or interactive quizzes, hindered active participation and engagement, exacerbating the lack of student involvement. These factors collectively underscore the weaknesses of the teaching approaches in terms of insufficient interaction, inadequate variation of instructional methods, and limited use of interactive tools.

While e-learning has many benefits, it also has its weaknesses. One of the main problems is the lack of personal interaction with the teacher and other classmates. This can make it difficult to ask questions and get feedback, which can hinder understanding and learning. Additionally, the need for self-discipline and motivation can be a challenge for some students. Some students may struggle to stay focused and manage their time when learning online, which can impact their performance. Furthermore, e-learning can be limited in terms of the practical and hands-on experience that students need to develop certain skills. This can make it difficult to apply theoretical knowledge in a practical setting. Participating student No.3.

Opportunities

The given information suggests that there are weaknesses in the current teaching and learning strategies applied in e-learning environments. However, these weaknesses present an opportunity to explore and implement innovative approaches that are better suited for virtual education. To enhance student engagement and reduce boredom associated with traditional lecture-based approaches, active learning strategies such as, case studies, group discussions, and virtual collaborative projects can be implemented. Additionally, effective use of technology, including interactive online platforms, virtual reality simulations, and gamification elements, can create more dynamic and engaging learning experiences for students.

E-learning has opened up a world of opportunities for me. I can access course materials and lectures at any time, from anywhere, which has been incredibly convenient. It has also allowed me to explore a wider range of subjects and learn from professors and experts around the globe, which I may not have had access to otherwise. Participating student No. 8

Without proper infrastructure and the use of innovative technology such as simulation, gamification, and effective instruction, classes may become boring, and students may struggle to complete learning activities on time. It is crucial to create motivation, interest, and establish communication with students, and ignoring these issues can lead to fundamental problems.

E-learning has been a mixed experience for me. While it has allowed me to access course materials and lectures at any time, from anywhere, it has also been difficult to stay motivated and engaged without the structure of in-person classes. Additionally, technical issues and poor internet connectivity have been a major source of frustration.

The professor’s insight

The strengths.

Virtual education has several strengths that have been identified by experts. One of the main strengths of virtual education is flexibility and easy access to learning materials anytime and anywhere, which allows learners to practice and repeat their learning activities at their own pace until they reach mastery. However, they also emphasized that online assessment methods should be compatible with the learner-centered approach. They emphasized the use of blended learning in medical education and believed that it is one of the most effective ways that can replace purely virtual courses. According to them, virtual education optimizes the use of human resources and prevents occupational burnout among instructors and staff. Moreover, students with different conditions and occupations such as employment and marital status can benefit from this approach. They stressed that virtual courses, if well-designed and attention is paid to visual, audio, and other content aspects that are relevant to the content, can also help to enhance the depth and durability of learning. On the other hand, they mentioned that virtual education can provide more calmness and motivation for instructors alongside face-to-face teaching, given the heavy and multi-faceted tasks of faculty members.

In fact, we are able to use technological advancements, such as LMS and online platforms, in education to facilitate teaching and learning. This allows individuals to learn remotely, which can be more efficient and time-saving. It also allows students to take on more responsibility for their learning and be more accountable for their progress. However, effective assessment methods are necessary to evaluate the knowledge that has been conveyed to the student. Participating teacher No.3. Utilizing and optimizing the benefits of remote learning can provide a more efficient and effective learning experience for students and faculty. This includes making education accessible to students who may have difficulty attending in-person classes, such as those who are married, employed, or otherwise unable to attend class. Well-designed online courses that utilize effective visuals, audio, and other techniques can enhance the depth and retention of learning. Additionally, offering remote learning options can reduce the burden and stress on members of the faculty, which can lead to a more motivated and engaged teaching experience. Participating teacher No.7.

Experts agree that virtual education has many strengths, but it also has weaknesses, particularly in the field of medical education and learning. One of the drawbacks is that teachers may not be familiar with the philosophy, teaching strategies, and production of e-content, leading to low-quality courses. Additionally, the lack of appropriate infrastructure and virtual teaching tools for teachers and students, as well as their unfamiliarity with the hardware and software required for teaching and producing suitable content, can hinder effective learning, especially during the COVID-19 era.

Furthermore, experts also noted that there is a lack of motivation among teachers to produce creative content and design innovative courses, resulting in delivering uniform and tedious education. They also identified the inability to use state-of-the-art technologies, particularly in clinical education, as a significant challenge. Experts agree that virtual education is not suitable for practical courses, apprenticeships, and bedside teaching, as learners cannot experience the real environmental challenges.

Another weakness of virtual education is the lack of face-to-face and close communication between teachers and students, which can negatively impact relationship-building, motivation, and effective teaching. The absence of students in the university environment and the disregard for the hidden curriculum can also affect the level of learning and students’ role as active and effective learners. Virtual education alone cannot provide the social and academic growth that comes with direct relationships between classmates and teachers, leading to isolation. Lastly, experts highlighted the inability to actively monitor students’ activities, especially in virtual classes, and provide accurate assignments, which can hinder effective learning. Online learning environments may have more distractions compared to traditional classroom settings, making it harder for students to stay focused and attentive. Furthermore, e-learning demands self-motivation and discipline from students. Without the physical presence of teachers and the structure of a traditional classroom, students must rely on their own self-discipline to stay engaged, manage their time effectively, and complete their coursework. This requires a higher level of self-motivation and can be challenging for some students.

The lack of interaction in online learning is one of the biggest challenges. For example, if the course is designed as pre-recorded lectures without a virtual classroom, there’s no feedback or interaction with the students. Some courses cannot be taught effectively in an online format, such as courses with a heavy emphasis on practical work or hands-on experiences. Additionally, interaction between professors and students is crucial for effective learning. Online learning can limit this interaction, and it’s difficult to understand students’ needs and provide feedback without it. Participating teacher No.1. When students have access to the internet during virtual classes, they may not pay close attention or use outside resources instead of focusing on the class material. Virtual exams are challenging to design and assess effectively. They may not accurately reflect students’ knowledge and abilities. The transition to online learning was rushed, and instructors were not fully prepared. This led to chaos and inefficiency in the system. Monitoring and reporting requirements in online learning often impose unnecessary workload on instructors, taking away time and attention from teaching. Online learning platforms can sometimes experience technical disruptions or connectivity issues. This can cause problems for students and instructors. Overall, the biggest weakness with online learning is the lack of interaction and engagement between professors and students. This can lead to a lower quality of education and a less effective learning experience. It’s important to consider the benefits and drawbacks of online learning before implementing it. Participating teacher No.5.

According to experts, there are many opportunities created by the appropriate combination of education and technology. By making proper use of modern technologies, especially various simulation methods, the gap between theory and practice can be reduced. Moreover, these methods can strengthen students’ procedural and clinical decision-making skills, prepare them to face real clinical challenges, and reduce medical errors and stress. Currently, students immediately enter the clinic after theory, which carries a lot of human error and stress. These methods can also be used effectively in community health and patient education. If virtual courses are designed in accordance with current global standards and all the capabilities of the learning management system are utilized, education will become more flexible, and many of the cumbersome processes will be reduced because all the activities of the instructor and student are recorded and traceable. Based on this, more accurate evaluation can be done.

According to professors, the most important opportunity before the rapid change of the educational system to in-person learning is the presence of trained human resources in universities. After two years, professors and experts have become familiar with the necessity, utility, and implementation of some systems, which is a good opportunity to improve and overcome weaknesses in in-person education. Also, given that most students belong to the digital age, virtual education provides an opportunity for teachers and universities to adapt to the needs of their students and provide more attractive and flexible education. Blended learning can provide more cost-effective opportunities for universities in today’s conditions by reducing many expenses such as transportation, nutrition, etc.

If the right conditions are in place, it would be beneficial for medical students to use technology such as virtual reality and simulation for clinical training. It could help them learn about medical equipment and procedures in a more interactive and engaging way, and potentially reduce the reliance on traditional methods. By incorporating technology into their education, medical students can gain valuable experience with modern medical practices, and be better prepared for their careers. Additionally, this could help reduce the workload for instructors and enhance the learning experience for students. However, it’s important to provide adequate training and resources to ensure that the technology is used effectively and safely. Participating teacher No.5. Opportunity to leverage the trained human resources in Universities is a crucial factor in the current scenario, as it provides a chance to improve and address the shortcomings in the use of online learning platforms. Professors and experts have also gained experience in the use of these systems, providing an opportunity to integrate their knowledge into the educational system. This can help enhance the quality of education and ensure that students are equipped with the necessary skills for the future. It is crucial to leverage such opportunities and continuously explore ways to improve the effectiveness of online learning platforms. This can help address the challenges faced by students and instructors in the current situation, and ensure the continuity of education in a more productive and effective way. Participating teacher No.1.

According to experts, if there is no proper teaching- learning strategy and monitoring, students may not attend classes and not perform learning activities on time. Motivation, interest, and establishing a connection with students may be challenging in a virtual environment. In addition, the quality of virtual education may be lower than in-person education if the necessary infrastructure, technology, and support are not provided. Therefore, proper planning, design, implementation, and monitoring are essential for virtual education to be effective. Virtual education may lead to feelings of isolation and reduced social interaction among students, impacting their overall well-being and sense of belonging. Ensuring consistent quality in virtual education can be challenging, as it requires effective monitoring and evaluation to maintain standards and ensure the delivery of high-quality content. Assessing student learning and providing authentic feedback in virtual education can be more challenging than in traditional classroom settings, as it may require alternative assessment methods and tools.

The lack of attention to the problems and concerns raised by users is highlighted as a serious threat to the long-term success of the online learning system. This negligence can result in weaknesses in the system and a decline in its effectiveness over time. Several factors contribute to this threat, including inadequate infrastructure, the lengthy process of implementing new online learning methods, and the cost of certain techniques such as simulation and virtual reality. Additionally, the lack of consideration of the positive aspects of each program, the rapid shift from one method to another, and the absence of close communication between users and administrators are identified as potential threats. Participating teacher No.10

Combined insights

By combining the findings from the cross-sectional study and the interviews, the researchers generated valuable insights into the overall effectiveness and impact of virtual education in the medical field. The strengths, weaknesses, opportunities, and threats identified provided a comprehensive understanding of the challenges and benefits of e-learning in medical education during the COVID-19 pandemic.

Based on the provided information, the strengths, weaknesses, opportunities, and threats of virtual education can be identified in relation to teaching-learning strategies, course structure, and infrastructure and technology domains in Table  4 .

The results revealed mixed views on e-learning in medical education by both teachers and students. The quality of e-learning systems was totally moderate from the perspective of medical students. In addition, teachers and representatives of students reported mixed results in the interviews and Our Qualitative data supported the findings of the quantitative section and provided a deeper understanding.

The results showed that the course structure, the student support system, and the infrastructure and technology domains were significantly higher than the mean value. However, the teaching-learning strategies subscale mean score was lower than the average level, indicating that there is room for improvement in this aspect of the educational environment. According to a number of research, the relationship between effectiveness and appropriate e-learning strategies is extremely important [ 24 ]. Wilcha’s research has shown that educational methods and learner interaction are critical in e-learning [ 25 ]. The students’ representative and experts’ views revealed that lack of student engagement was a prominent issue observed in the online classes, and the strategies employed failed to effectively captivate students, leading to a noticeable absence of interest and a sense of boredom. The absence of face-to-face interactions with peers and instructors could deprive students of the social aspect of traditional classrooms, which may impact their motivation, sense of belonging, and ability to form meaningful relationships with fellow students and teachers [ 26 ]. The experts also emphasized the use of blended learning in medical education and believed that it is one of the most effective ways that can replace purely virtual courses. The weaknesses of virtual education present an opportunity to explore and implement innovative approaches that are better suited for virtual education [ 27 ]. To enhance student engagement and reduce boredom associated with traditional lecture-based approaches, active learning strategies such as case studies, group discussions, and virtual collaborative projects can be implemented [ 28 ]. Additionally, effective use of technology, including interactive online platforms, virtual reality simulations, and gamification elements, can create more dynamic and engaging learning experiences for students [ 29 ]. Wu et al. found that the most effective e-learning designs include interactive learning activities, learner motivation and enthusiasm, the right presentation technologies, and learning in the social and personal context of the learner [ 30 ]. These findings suggest that the successful implementation of e-learning strategies requires a thoughtful approach, focusing on learner engagement and experience. Therefore, the success of e-learning systems depends on the educational strategies used and their combination with appropriate technology [ 31 ]. One reason these facilities were not available during the COVID-19 pandemic outbreak was that most professors converted their face-to face courses into virtual ones without appropriate technology-based strategies [ 24 ]. Applying appropriate learning strategies in virtual environments takes time and requires the necessary skills to gradually achieve this goal [ 25 ].

Furthermore, the study found that student support systems were one of the most influential factors in student satisfaction, with the university investing in student services and technology to facilitate online education. Student support systems include all services that facilitate the learning of a specific learner prior to, during, and after learning [ 26 – 27 ]. In this study, the students received training and online support to participate in classes, and other software essential to online education. They had easy access to educational portals, instructors, and digital libraries, and the university created a learning management system to manage the process of e-learning. Student support technicians developed social media and included students from all faculties, who could remotely assist students with problem-solving and guide them. The students’ perceptions toward e-learning systems are consistent with the findings of this study. According to a number of studies, the student support system is one of the most influential factors in student satisfaction [ 28 ]. One possible reason for the higher quality reported in the student support system domain is that the university places a high priority on developing the system across all faculties. Moreover, the university has invested in the development of student services that are provided online, via a remote system, and by phone. They had easy access to educational portals, instructors, and the digital library. The university paid special attention to the application of technology in the majority of its services, which is one reason why the highest quality has been reported [ 29 ]. The university also created a learning management system (LMS) to manage the process of e-learning through networks that let students talk to each other and interact with the content of e-courses. [17] In addition, it provided online training and support for students’ participation in LMS, virtual classes, and software essential to virtual education. Additionally, student support technicians developed social media and included students from all faculties. So that they could remotely assist students with problem-solving and guide them. Content, as a significant challenge.

The study also highlighted the importance of teacher training and support in facilitating successful e-learning experiences. Participants stressed the need for teachers to be adequately trained in e-learning technologies and pedagogies to ensure that they are equipped to deliver high-quality online instruction. Additionally, participants emphasized the need for ongoing technical support to help students and teachers overcome any issues that arise.

Moreover, from the students’ perspective, the course structure received the highest quality score. According to some experts, a clearly structured course helps students understand what to expect in the course and what is expected of them each week, reducing stress and allowing them to better manage their time and organization [ 31 ]. One of the main advantages of e-learning identified by the teachers and students was its flexibility and convenience, allowing them to learn and teach at their own pace and in their own time, access educational resources efficiently, and receive feedback whenever they need it. This reduces their stress and allows them to better manage their time and organization [ 32 ]. An appropriate course structure also provides students with a greater sense of clarity, focus, and direction in their studies and increases discoverability, which is essential for online learners [ 20 ]. The present study revealed that students were provided with comprehensive information about the educational calendar, course plan, and curriculum. Additionally, having a clearly structured course gives students the ability to plan ahead, which is beneficial for their academic and career goals [ 33 ].

Additionally, e-learning platforms provide access to a wealth of resources, such as recorded lectures, interactive modules, and online textbooks, which can support and enhance learning. The experts also noted several weaknesses of virtual education, including technical challenges, self-motivation and discipline. They also identified the lack of appropriate infrastructure and virtual teaching tools for teachers, as well as their unfamiliarity with the hardware and software required for teaching and producing suitable [ 34 ]. This research disclosed a significant relationship between age, gender, grade, and test score. The result revealed that female students had significantly higher mean evaluation scores. Additionally, the mean evaluation score declined significantly with age. Fiorina et al. demonstrated that student satisfaction with the quality of virtual education decreases significantly with age and study years [ 25 ]. In addition, it appears that higher-semester students with more traditional education experience received a lower score for virtual education in the current study. Additionally, Aljaraideh et al. discovered that women are more interested in e-learning than men [ 35 ]. The research reveals that younger students, particularly females, have a greater preference for technology-oriented methods. They desire to study in digital environments, participate in virtual groups, and express their opinions in virtual groups [ 36 – 37 ]. The difference between the views of students and teachers regarding infrastructure and software highlights the gap between students who belong to the digital age and digital natives, and teachers who are mostly digital immigrants. To bridge this gap, teachers and need relevant training to increase student achievement.

Limitation and recommendation

This research was conducted in a single state only. It is suggested that future research be carried out over a longer time period and with a larger sample size in order to obtain a more precise evaluation of medical students.

This mixed-method study provided insights into the experiences of faculty members and medical students with e-learning during the COVID-19 pandemic. The integration of quantitative and qualitative data provided a more comprehensive understanding of the phenomenon under study. In conclusion, virtual education has several strengths and weaknesses, and there is a need to explore innovative approaches to enhance student engagement and reduce boredom. The lack of appropriate infrastructure and virtual teaching tools for teachers and students, as well as their unfamiliarity with the hardware and software required for teaching and producing suitable content, is a significant challenge that needs to be addressed. The use of blended learning in medical education is considered effective, and the shift from teacher-centered to learner-centered teaching approaches is an opportunity to explore innovative teaching approaches.

Data availability

The data supporting this study’s findings are available from the corresponding author on request.

Garg R, Singh A. Were the Online Training courses Imparted to consultants in the COVID Era really effective? Interdisciplinary J Virtual Learn Med Sci. 2022;13(1):66–7. https://doi.org/10.30476/ijvlms.2022.94510.1136 .

Article   Google Scholar  

Lim EC, Oh VM, Koh DR, Seet RC. The challenges of continuing medical education in a pandemic era. Ann Acad Med Singap. 2009;38(8):724–6.

Article   PubMed   Google Scholar  

Lu ZH, GUO YQ. An online teaching exploration of keeping on studying while schools are closed in primary and middle schools. DEStech Transactions on Social Science, Education and Human Science. 2018(icessh).

Gad S. E-Learning and Social Work Education during COVID-19. Public Organ Rev. 2023;23(1):343–64.

Abedini Baltork M. Curriculum Components of Virtual Programs at a Medical University: the Students’ perspective. Interdisciplinary J Virtual Learn Med Sci. 2021;12(1):49–57. https://doi.org/10.30476/ijvlms.2021.87842.1051 .

Zhang Z, Cao T, Shu J, Liu H. Identifying key factors affecting college students’ adoption of the e-learning system in mandatory blended learning environments. Interact Learn Environ. 2022;30(8):1388–401.

Dyrek N, Wikarek A, Niemiec M, Owczarek AJ, Olszanecka-Glinianowicz M, Kocełak P. The perception of e-learning during the SARS-CoV-2 pandemic by students of medical universities in Poland–a survey-based study. BMC Med Educ. 2022;22(1):529.

Article   PubMed   PubMed Central   Google Scholar  

Rathod G, Parmar P. E-learning in medical education during COVID era. DY Patil J Health Sci. 2021;9(1):39–40.

Google Scholar  

Farajollahi M, Hosein ZA, Hormozi M, Sarmadi MR, Zarifsanaee N. A conceptual model for effective distance learning in higher education. Turkish Online J Distance Educ. 2010;11(3):63–77.

Li C, He L, Wong IA. Determinants predicting undergraduates’ intention to adopt e-learning for studying English in Chinese higher education context: a structural equation modelling approach. Educ Inform Technol. 2021;26:4221–39.

Affouneh S, Salha S, Khlaif Z, Designing Quality E-L. Environments for emergency remote teaching in Coronavirus Crisis. Interdisciplinary J Virtual Learn Med Sci. 2020;11(2):135–7. https://doi.org/10.30476/ijvlms.2020.86120.1033 .

Suryani NK, Sugianingrat IA. Student e-learning satisfaction during the Covid-19 pandemic in Bali, Indonesia. Jurnal Economia. 2021;17(1):141–51.

Al Rawashdeh AZ, Mohammed EY, Al Arab AR, Alara M, Al-Rawashdeh B. Advantages and disadvantages of using e-learning in university education: analyzing students’ perspectives. Electron J E-learning. 2021;19(3):107–17.

Kibuku RN, Ochieng DO, Wausi AN. eLearning challenges faced by universities in Kenya: A literature review. Electron J e-Learning. 2020;18(2):pp150–161.

Co M, Chung PHY, Chu KM. Online teaching of basic surgical skills to medical students during the COVID-19 pandemic: a case–control study. Surg Today. 2021;51:1404–9.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Subashini N, Udayanga L, De Silva LH, Edirisinghe JC, Nafla MN. Undergraduate perceptions on transitioning into E-learning for continuation of higher education during the COVID pandemic in a developing country: a cross-sectional study from Sri Lanka. BMC Med Educ. 2022;22(1):1–2.

Niedlich S, Kallfaß A, Pohle S, Bormann I. A comprehensive view of trust in education: conclusions from a systematic literature review. Rev Educ. 2021;9(1):124–58.

Stratton SJ. Population research: convenience sampling strategies. Prehosp Disaster Med. 2021;36(4):373–4.

Shahhoseini MA, Narenji Thani F, Ebadi R, Roodbari H. Service quality evaluation of teaching-learning system in higher education. Acad Librariansh Inform Res. 2015;49(2):277–303.

Kaviani Broujeni R, Rezaee M, Pashazadeh Azar Z, Tabatabae M, Gerivani H. The measure of processes of care 20-item (MPOC-20): validity and reliability of the Persian version. Archives Rehabilitation. 2021;22(1):102–17.

Ustabulut MY. SWOT analysis for the Distance Education Process of Lecturers teaching Turkish as a Foreign Language. Educational Policy Anal Strategic Res. 2021;16(1):139–52.

Hallal K, HajjHussein H, Tlais S. A quick shift from classroom to Google Classroom: SWOT analysis. J Chem Educ. 2020;97(9):2806–9.

Article   CAS   Google Scholar  

Jain N. Survey versus interviews: comparing data collection tools for exploratory research. Qualitative Rep. 2021;26(2):541–54.

Poudel P, Ghimire R, Subedi A. Barriers perceived by Medical and Faculty members for the implementation of virtual Classroom during the Covid-19 pandemic in Nepal. Interdisciplinary J Virtual Learn Med Sci. 2022;13(4):275–80. https://doi.org/10.30476/ijvlms.2023.96750.1184 .

Wilcha RJ. Effectiveness of virtual medical teaching during the COVID-19 crisis: systematic review. JMIR Med Educ. 2020;6(2):e20963.

Zhang T, Shaikh ZA, Yumashev AV, Chłąd M. Applied model of E-learning in the framework of education for sustainable development. Sustainability. 2020;12(16):6420.

Greenhow C, Graham CR, Koehler MJ. Foundations of online learning: challenges and opportunities. Educational Psychol. 2022;57(3):131–47.

Alammary A, Alshaikh M, Alhogail A. The impact of the COVID-19 pandemic on the adoption of e-learning among academics in Saudi Arabia. Behav Inform Technol. 2022;41(14):3138–60.

Jovanović A, Milosavljević A. VoRtex Metaverse platform for gamified collaborative learning. Electronics. 2022;11(3):317.

Wu L, Hsieh PJ, Wu SM. Developing effective e-learning environments through e-learning use mediating technology affordance and constructivist learning aspects for performance impacts: moderator of learner involvement. Internet High Educ. 2022;55:100871.

Osei HV, Kwateng KO, Boateng KA. Integration of personality trait, motivation and UTAUT 2 to understand e-learning adoption in the era of COVID-19 pandemic. Educ Inform Technol. 2022;27(8):10705–30.

Castro MD, Tumibay GM. A literature review: efficacy of online learning courses for higher education institution using meta-analysis. Educ Inform Technol. 2021;26:1367–85.

Fiorini LA, Borg A, Debono M. Part-time adult students’ satisfaction with online learning during the COVID-19 pandemic. J Adult Continuing Educ. 2022;28(2):354–77.

Pham L, Limbu YB, Bui TK, Nguyen HT, Pham HT. Does e-learning service quality influence e-learning student satisfaction and loyalty? Evidence from Vietnam. Int J Educational Technol High Educ. 2019;16(1):1–26.

Aljaraideh Y, Al Bataineh K. Jordanian students’ barriers of utilizing online learning: a Survey Study. Int Educ Stud. 2019;12(5):99–108.

Ho IM, Cheong KY, Weldon A. Predicting student satisfaction of emergency remote learning in higher education during COVID-19 using machine learning techniques. PLoS ONE. 2021;16(4):e0249423.

Wong WH, Chapman E. Student satisfaction and interaction in higher education. High Educ. 2023;85(5):957–78.

Download references

Acknowledgements

We are grateful to the research counsellor of the National Agency for Strategic Research in Medical Education (NASR), Tehran, Iran, for funding this project (Decree Code: 9610280). Additionally, we appreciate the research counsellor at SUMS for supporting this study (decree code: IR.SUMS.REC.1401.002.) We are also thankful to all the students who took part in this project and cooperation in conducting the present study.

The authors would like to thank the National Agency for Strategic Research in Medical Education (NASR), Tehran, Iran, for their financial support (grant No. 9610280.).

Author information

Authors and affiliations.

Department of E-learning, Virtual School, Shiraz University of Medical Sciences, Shiraz, Iran

Nahid Zarifsanaiey, Zahra karimian & farshid chahartangi

Department of Neurosurgery, School of Medicine, Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran

Majid Reza Farrokhi

Shiraz University of Medical Sciences, Shiraz, Iran

Sara hoseini

Departments of Epidemiology and Biostatistics, Faculty of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran

Hadi Raeisi Shahraki

You can also search for this author in PubMed   Google Scholar

Contributions

M.R.F., N.Z., and Z.K. devised the study concept, designed the study, supervised the intervention, data collection, and analysis, coordinated the research, and critically revised the manuscript. S.H. and F.C. collected data, ran the study intervention, participated in the study concept, and H.R. performed the analyses, and revised the manuscript. All authors have read and approved the content of the manuscript.

Corresponding author

Correspondence to Nahid Zarifsanaiey .

Ethics declarations

Ethics approval and consent to participate.

The study was approved by the local ethics council of Shiraz University of Medical Sciences (decree code: IR.SUMS.REC.1401.002). To observe research ethics, the participants’ consent for participation in the study was taken. All methods were performed in accordance with the relevant guidelines and regulations. In the initial phone call, the researcher explained the objectives of the study, emailed the informed consent form to the participant, and obtained their signed informed consent. To ensure anonymity, no names were included on the surveys, and a research assistant decoded all completed questionnaires to prevent errors. To adhere to ethical standards, participation was voluntary and participants had the right to withdraw at any time.

Content for publication

Not applicable.

Ethical approval and/or Institutional Review Board (IRB) approval

The study commenced following approval by the local ethics committee (decree code: IR.SUMS.REC.1401.396) and coordination with the vice president of research at the universities. In the initial phone call, the researcher explained the objectives of the study, emailed the informed consent form to the participant, and obtained their signed informed consent. To ensure anonymity, no names were included on the surveys, and a research assistant decoded all completed questionnaires to prevent errors. To adhere to ethical standards, participation was voluntary and participants had the right to withdraw at any time.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Zarifsanaiey, N., Farrokhi, M.R., karimian, Z. et al. Lesson learned from assessing teachers’ and students’ perspectives regarding the quality of e-learning in medical education during the pandemic: a mixed-methods study. BMC Med Educ 24 , 171 (2024). https://doi.org/10.1186/s12909-024-05160-4

Download citation

Received : 04 September 2023

Accepted : 09 February 2024

Published : 22 February 2024

DOI : https://doi.org/10.1186/s12909-024-05160-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Medical University
  • Perspective

BMC Medical Education

ISSN: 1472-6920

case study methodology in educational research

IMAGES

  1. PPT

    case study methodology in educational research

  2. what is case study as a research design

    case study methodology in educational research

  3. writing a case study methodology

    case study methodology in educational research

  4. a case study research methodology is useful in

    case study methodology in educational research

  5. (PDF) Qualitative Case Study Methodology: Study Design and

    case study methodology in educational research

  6. Sample Case Studies Used In Research : Case Study Definition And How To

    case study methodology in educational research

VIDEO

  1. Case Study Methodology

  2. CASE STUDIES @ IBS HYDERABAD

  3. Qualitative Research and Case Study

  4. Case study presentation

  5. #Methods&Techniques:Research Methodology-11

  6. Observational Study| Research Method, #researchmethodology #shortnotes #bba #bcom

COMMENTS

  1. Case Study in Education Research

    Case study has its roots in anthropological studies in which a strong ethnographic approach to the study of peoples and culture encouraged researchers to identify and investigate key individuals and groups by trying to understand the lived world of such people from their points of view.

  2. (PDF) Three Approaches to Case Study Methods in Education: Yin, Merriam

    Case study methodology has long been a contested terrain in social sciences research which is characterized by varying, sometimes opposing, approaches espoused by many research...

  3. Three Approaches to Case Study Methods in Education: Yin, Merriam, and

    Three Approaches to Case Study Methods in Education: Yin, Merriam, and Stake Bedrettin Yazan University of Alabama, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/tqr Part of the Quantitative, Qualitative, Comparative, and Historical Methodologies Commons, and the Social Statistics Commons Recommended APA Citation

  4. Case Study Methodology of Qualitative Research: Key Attributes and

    1. Case study is a research strategy, and not just a method/technique/process of data collection. 2. A case study involves a detailed study of the concerned unit of analysis within its natural setting.

  5. Case Studying Educational Research: A Way of Looking at Reality

    Given the increasing use of case study in educational research, key aspects of its construction were analysed, including literature review, methodological choices, data collection and...

  6. Sage Research Methods

    Using Case Study in Education Research By: Lorna Hamilton & Connie Corbett-Whittier Publisher: SAGE Publications Ltd Series: BERA/SAGE Research Methods in Education Publication year: 2013 Online pub date: December 22, 2014 Discipline: Education Methods: Case study research, Research questions, Educational research

  7. (PDF) Qualitative Case Study Methodology: Study Design and

    This chapter makes the case that case study research is making a comeback in educational research because it allows researchers a broad range of methodological tools to suit the needs of answering ...

  8. Using Case Study in Education Research

    Case Study & Narrative Analysis | Educational Research Methods. November 2012 | 240 pages | SAGE Publications Ltd. Download flyer. Description. Contents. Reviews. Preview. This book provides an accessible introduction to using case studies. It makes sense of literature in this area, and shows how to generate collaborations and communicate findings.

  9. Case studies in educational research

    It is for those with little or no experience of case study in education research and provides an introduction to some of the key aspects of this approach: from the all important question of what exactly is case study, to the key decisions around case study work and possible approaches to dealing with the data collected.

  10. What Is a Case Study?

    Step 1: Select a case Step 2: Build a theoretical framework Step 3: Collect your data Step 4: Describe and analyze the case Other interesting articles When to do a case study A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject.

  11. Case Studies

    Case Studies Dee Degner; Amani Gashan; and Natalia Ramirez Casalvolone. Description. Creswell and Poth (2018) define case study as a strategy that involves the study of an issue explored through one or more cases within a bounded system (i.e., a setting or a context), a methodology, a type of design in qualitative research, or an object of study, as well as a product of the inquiry.

  12. PDF Case Study Methodology: Flexibility, Rigour, and Ethical ...

    Based on our own successful experiences investigating pedagogical and curricular practices, in this Research Note we outline case study methodology as a useful approach for individuals or teams conducting SoTL inquiry in multidisciplinary higher education settings.

  13. A Case for Case Study Research in Education

    This chapter makes the case that case study research is making a comeback in educational research because it allows researchers a broad range of methodological tools to suit the needs of answering questions of "how" and "why" within a particular real-world context.

  14. The Case Study as a Research Method

    this field. First, the case study has been of increased value of research in education, psychology, sociology, and anthropology; progress has been made in the technics of gathering and study data for research purposes; and third, case material ployed in many significant investigations. The Acknowledged Value of the Case Study as Research Method

  15. A Beginner's Guide to Applied Educational Research using ...

    In this article, the inquiry framework is presented as a roadmap to direct applied educational research that involves the complexities of studying the cognitive processes, behaviours, motivations and personalities of individuals and of groups of learners in varied contexts.

  16. PDF Employing Case Study Methodology in Special Educational Settings

    acknowledging and assessing the needs of students in education. A case study is the best methodology when holistic, in-depth research is needed. It is an exhaustive study of a group, a level of human condition, an occurrence, or a community (Popil, 2011). The French mostly used first used case study as a research methodology in Europe (Amy et al.,

  17. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  18. Multiple Case Studies

    Key Research Books and Articles on Multiple Case Study Methodology. Yin, R. K. (2017). Case study research and applications: Design and methods. Los Angeles, CA: Sage. Yin discusses how to decide if a case study should be used in research. Novice researchers can learn about research design, data collection, and data analysis of different types ...

  19. Using Case Study in Education Research

    The authors bring together the practical and the theoretical, enabling readers to build expertise on the principles and practice of case study research, as well as engaging with possible theoretical frameworks. They also highlight the place of case study as a key component of educational research. With the help of this book, M-Level students ...

  20. PDF The Case Study in Educational Research: a Review of Selected ...

    with it, or study the unit's history. A case study differs from other research methods primarily in the nature of the product. The case study results in an intensive, holistic description and analysis of the phenomenon or social unit being studied. It is characterized by what Geertz (in Guba and Lincoln, 1981) calls "thick description."

  21. Learning about case study methodology to research higher education

    In this paper, I draw on 10 years' experience of teaching research methods in higher education. I teach on a one-year part-time course that aims to help academics change their practice and contribute to the theories of teaching in higher education through publication of their work. ... The preferred research method is case study and there are ...

  22. The Case Study Method in Social Inquiry

    College of Education (mimeo). MacDonald Barry and Walker Rob. Case study and the social philosophy of educational research. Cambridge Journal of Education 1975;5 No. 1. Ortony Andrew. Knowledge, language and thinking 1975 Urbana Univ. of III. College of Education (mimeo). Polanyi Michael.

  23. MultiSensory Music Drama with a student with severe/profound

    Finally, the fact that this research was a case study, carried out with one teacher and one student, inevitably implies certain weaknesses. While case study methodology has the potential to provide a rich exploration of practice in a real-life context (Simons, 2009), it is limited since it focuses on just one or a few contexts or cases. Also ...

  24. How can procedural flowcharts support the development of ...

    Supporting students' problem-solving skills, solution planning and sequencing of different stages that are involved in successfully developing a meaningful solution to a problem has been a challenge for teachers. This case study was informed by reflective investigation methodology which explored how procedural flowcharts can support student mathematics problem solving in a senior ...

  25. Descriptive Research in Psychology

    Descriptive Case Study Research. A descriptive approach to a case study is akin to a biography of a person, honing in on the experiences of a small group to extrapolate to larger themes. We most ...

  26. Lesson learned from assessing teachers' and students' perspectives

    The evaluation of e-learning systems ensures the provision of quality training. The goal was to identify the perspectives of teachers and students on e-learning in medical education during the COVID-19 pandemic at Shiraz University of Medical Sciences (SUMS), Iran. This study utilized a convergent mixed methods research design with a two-phase approach to collect and analyze data between June ...

  27. Three approaches to case study methods in education: Yin, Merriam, and

    Three approaches to case study methods in education: Yin, Merriam, and Stake Authors: Bedrettin Yazan University of Texas at San Antonio Ivar César Oliveira de Vasconcelos Universidade Paulista...

  28. Full article: Using a coproduced educational workshop to change the

    This combined pedagogical approach replicated our previous method (Andrew et al. Citation 2021) by providing a data-informed process where coaches interpreted and evaluated their own pre- and post-workshop findings on verbal instruction delivery methods in an educational environment that encouraged them to discuss and appraise the information ...